Skip to main content
Log in

Antioxidant activity of Chelidonium majus extract at phenological stages

  • Article
  • Published:
Applied Biological Chemistry Submit manuscript

An Erratum to this article was published on 12 September 2017

This article has been updated

Abstract

Chelidonium majus, from Papaveraceae family, is a rich source of different antioxidants with a range of medicinal activities including antispasmodic and diuretic properties. In this study, antioxidant potential of extracts from leaves during different phenological stages was measured by ferric-reducing power (FRAP) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity. Factors affecting antioxidant activity, i.e., total phenols, flavonoids, anthocyanin and carotenoids, were then investigated. Soluble sugar and total protein contents of samples were also determined. According to the results, maximum DPPH radical scavenging activity was 408/88 ± 24/83 g/g DW at growing stage, and the FRAP value reached maximum during fruiting stage (1.75 ± 0.04 mg/g FW). The leaves of flowering stage contained the most content of total phenol (17.8 ± 1.59 mg/g DW), flavonoid (69.7 ± 0.86 mg/g DW), anthocyanin (0.233 ± mg/g DW) and soluble sugar (0.338 ± 0.009 mg/g DW). However, the highest value for carotenoid (2.083 mg/g DW) and protein (0.27 ± 0.034 mg/g DW) was found at the vegetative stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 12 September 2017

    An erratum to this article has been published.

References

  1. Paul A, Das J, Das S, Samadder A, Khuda-Bukhsh AR (2013) Poly (lactide-co-glycolide) nano-encapsulation of chelidonine, an active bioingredient of greater celandine (Chelidonium majus), enhances its ameliorative potential against cadmium induced oxidative stress and hepatic injury in mice. Environ Toxicol Pharmacol 36(3):937–947

    Article  CAS  Google Scholar 

  2. Takable W, Niki E, Uchida K, Yamada S, Satoh K, Noguchi N (2001) Oxidative stress promotes the development of transformation: involvement of a potent mutagenic lipid peroxidation product, acrolein. Carcinogenesis 22:935–941

    Article  Google Scholar 

  3. Schulz JB, Seyfried J, Dichgans J (2000) Glutathione, oxidative stress and neurodegeneration. Eur J Biochem 267:4904–4911

    Article  CAS  Google Scholar 

  4. Poli G, Parola M (1997) Oxidative damage and fibrogenesis. Free Rad Biol Med 22:287–292

    Article  CAS  Google Scholar 

  5. Duthie G, Crosier A (2000) Plant-derived phenolic antioxidants. Curr Opin Lipidol 11(1):447–451

    Article  Google Scholar 

  6. Tsuchiya H, Ueno T, Tanaka T, Matsuura N, Mizogami M (2010) Comparative study on determination of antioxidant and membrane activities of propofol and its related compounds. Eur J Pharm Sci 39(1–3):97–102

    Article  CAS  Google Scholar 

  7. Prior RL, Cao G, Prior RL, Cao G (2000) Analysis of botanicals and dietary supplements for antioxidant capacity: a review. J AOAC Int 83(4):950–956

    CAS  Google Scholar 

  8. Rice-Evans CA, Sampson J, Bramley PM, Holloway DE (1997) Why do we expect carotenoids to be antioxidants in vivo? Free Radic Res 26(4):381–398

    Article  CAS  Google Scholar 

  9. Nadova S, Miadokova E, Alfoldiova L, Kopaskova M, Hasplova K, Hudecova A, Vaculcikova D, Gregan F, Cipak L (2008) Potential antioxidant activity cytotoxic and apoptosis-inducing effects of Chelidonium majus L. extract on leukemia cells. Neuro Endocrinol Lett 29(5):649–652

    Google Scholar 

  10. Arora S, Singh S, Piazza GA, Contreras CM, Panyam J, Singh AP (2012) Honokiol: a novel natural agent for cancer prevention and therapy. Curr Mol Med 12(10):1244–1252

    Article  CAS  Google Scholar 

  11. Marin GH, Mansilla E (2010) Apoptosis induced by Magnolia Grandiflora extract in chlorambucil-resistant B-chronic lymphocytic leukemia cells. J Cancer Res Ther 6(4):463–465

    Article  CAS  Google Scholar 

  12. Ikeuchi M, Tatematsu K, Yamaguchi T, Okada K, Tsukaya H (2013) Precocious progression of tissue maturation of leaflets in Chelidonium majus subsp asiaticum (Papaveraceae). Am J Bot 100(6):1116–1126

    Article  Google Scholar 

  13. Park JE, Cuong TD, Hung TM, Lee I, Na M, Kim JC, Ryoo S, Lee JH, Choi JS, Woo MH, Min BS (2011) Alkaloids from Chelidonium majus and their inhibitory effects on LPS-induced NO production in RAW264.7 cells. Bioorg Med Chem Lett 21(23):6960–6963

    Article  CAS  Google Scholar 

  14. Jakovljevic ZD, Stankovic SM, Topuzovic DM (2013) Seasonal variability of chelidonium majus L. secondary metabolites content and antioxidant activity. EXCLIN J 12:260–268

    Google Scholar 

  15. Colombo ML, Bosisio E (1996) Pharmacological activities of Chelidonium majus L. (Papaveraceae). Pharmacol Res 33(2):127–134

    Article  CAS  Google Scholar 

  16. Habermehl D, Kammerer B, Handrick R, Eldh T, Gruber C, Cordes N, Daniel P, Plasswilm L, Bamberg M, Belka C, Jendrossek V (2006) Proapoptotic activity of Ukrain is based on Chelidonium majus L. alkaloids and mediated via a mitochondrial death pathway. BMC Cancer 6(14):1–22

    Google Scholar 

  17. Nowicky JW, Staniszewski A, Zbroja-Sontag W, Slesak B, Nowicky W, Hiesmayr W (1991) Evaluation of thiophosphoric acid alkaloid derivatives from Chelidonium majus L. (“Ukrain”) as an immunostimulant in patients with various carcinomas. Drugs Exp Clin Res 17(2):139–143

    CAS  Google Scholar 

  18. Papuc C, Crivineanu M, Nicorescu V, Predescu C, Rusu E (2012) Scavenging activity of reactive oxygen species by polyphenols extracted from different vegetal parts of celandine (Chelidonium majus). Chemiluminescence Screening. Rev Chim 63(2):193–197

    CAS  Google Scholar 

  19. Gañán NA, Dias AM, Bombaldi F, Zygadlo JA, Brignole EA, de Sousa HC, Braga ME (2016) Alkaloids from Chelidonium majus L.: fractionated supercritical CO2 extraction with co-solvents. Sep Purif Technol 165:199–207

    Article  Google Scholar 

  20. Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal Biochem 239:70–76

    Article  CAS  Google Scholar 

  21. Miliauskas G, van Beek TA, de Waard P, Venskutonis RP, Sudhölter EJ (2005) Identification of radical scavenging compounds in Rhaponticum carthamoides by means of LC-DAD-SPE-NMR. J Nat Prod 68(2):168–172

    Article  CAS  Google Scholar 

  22. Wu X, Beecher GR, Holden JM, Haytowitz DB, Gebhardt SE, Prior RL (2006) Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. J Agric Food Chem 54(11):4069–4075

    Article  CAS  Google Scholar 

  23. Luo X, Huang Q (2011) Relationships between leaf and stem soluble sugar content and tuberous root starch accumulation in cassava. J Agric Sci 3(2):64–72

    Google Scholar 

  24. Lamien-Meda A, Lamien CE, Compaoré MM, Meda RN, Kiendrebeogo M, Zeba B, Millogo JF, Nacoulma OG (2008) Polyphenol content and antioxidant activity of fourteen wild edible fruits from Burkina Faso. Molecules 13(3):581–594

    Article  CAS  Google Scholar 

  25. Hadaruga DI, Hadaruga NG (2009) Antioxidant activity of Chelidonium majus L. extracts from the Banat county. J Agroaliment Process Technol 15(3):396–402

    CAS  Google Scholar 

  26. Maji AK, Banerji P (2015) Chelidonium majus L. (Greater celandine)—a review on its phytochemical and therapeutic perspectives. Int J Herb Med 3(1):10–27

    Article  Google Scholar 

  27. Vahlensieck U, Hahn R, Winterhoff H, Gumbinger HG, Nahrstedt A, Kemper FH (1995) The effect of Chelidonium majus herb extract on choleresis in the isolated perfused rat liver. Planta Med 61(3):267–271

    Article  CAS  Google Scholar 

  28. Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2(5):270–278

    Article  Google Scholar 

  29. Lahouel M, Boulkour S, Segueni N, Fillastre JP (2004) The flavonoids effect against vinblastine, cyclophosphamide and paracetamol toxicity by inhibition of lipid-peroxydation and increasing liver glutathione concentration. Pathol Biol (Paris) 52(6):314–322

    Article  CAS  Google Scholar 

  30. Lotito SB, Frei B (2006) Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: cause, consequence, or epiphenomenon? Free Radic Biol Med 41(12):1727–1746

    Article  CAS  Google Scholar 

  31. Woo HD, Kim J (2013) Dietary flavonoid intake and smoking-related cancer risk: a meta-analysis. PLoS ONE 8(9):e75604

    Article  CAS  Google Scholar 

  32. Ravishankar D, Rajora AK, Greco F, Osborn HM (2013) Flavonoids as prospective compounds for anti-cancer therapy. Int J Biochem Cell Biol 45(12):2821–2831

    Article  CAS  Google Scholar 

  33. Vieira AR, Abar L, Vingeliene S, Chan DSM, Aune A, Navarro-Rosenblatt D, Stevens C, Greenwood D, Norat T (2016) Fruits, vegetables and lung cancer risk: a systematic review and meta-analysis. Ann Oncol 27(1):81–96

    Article  CAS  Google Scholar 

  34. Leoncini E, Nedovic D, Panic N, Pastorino R, Edefonti V, Boccia S (2015) Carotenoid intake from natural sources and head and neck cancer: a systematic review and meta-analysis of epidemiological studies. Cancer Epidemiol Biomarkers Prev 24(7):1003–1011

    Article  CAS  Google Scholar 

  35. Song JY, Yang HO, Pyo SN, Jung IS, Yi SY, Yun YS (2002) Immunomodulatory activity of protein-bound polysaccharide extracted from Chelidonium majus. Arch Pharmacal Res 25(2):158–164

    Article  CAS  Google Scholar 

  36. Halliwell B (2007) Oxidative stress and cancer: Have we moved forward? Biochem J 401(1):1–11

    Article  CAS  Google Scholar 

  37. Battle TE, Arbiser J, Frank DA (2005) The natural product honokiol induces caspase-dependent apoptosis in B-cell chronic lymphocytic leukemia (B-CLL) cells. Blood 106(2):690–697

    Article  CAS  Google Scholar 

  38. Aljuraisy YH, Mahdi NK, Al-Darraji MNJ (2012) Cytotoxic effect of Chelidonium majus on cancer cell. Al-Anbar J Vet Sci 5(1):85–90

    Google Scholar 

  39. Lee DH, Szczepanski MJ, Lee YJ (2009) Magnolol induces apoptosis via inhibiting the EGFR/PI3K/Akt signaling pathway in human prostate cancer cells. J Cell Biochem 106:1113–1122

    Article  CAS  Google Scholar 

  40. El-Readi MZ, Eid S, Ashour ML, Tahrani A, Wink M (2013) Modulation of multidrug resistance in cancer cells by chelidonine and Chelidonium majus alkaloids. Phytomedicine 20(3–4):282–294

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The study was partly supported by Zanjan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sariri.

Additional information

The original version of this article was revised.

An erratum to this article is available at https://doi.org/10.1007/s13765-017-0318-4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodabande, Z., Jafarian, V. & Sariri, R. Antioxidant activity of Chelidonium majus extract at phenological stages. Appl Biol Chem 60, 497–503 (2017). https://doi.org/10.1007/s13765-017-0304-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13765-017-0304-x

Keywords

Navigation