Skip to main content
Log in

Microbiota associated with the starter cultures and brewing process of traditional Hong Qu glutinous rice wine

  • Review
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Hong Qu glutinous rice wine (produced mainly in Fujian province, China) is a traditional alcoholic beverage, which is prepared by fermenting cooked rice using a starter containing Monascus purpureus. In this review, the microbial diversity of fermentation starters from Fujian province, including fungi, bacteria, and yeast, is analyzed in comparison with those of “nuruk” (a traditional starter for making alcoholic beverages in Korea). The bacterial organization of Hong Qu starters was vastly variable in species composition and dominated by Bacillus sp. Lactic acid bacteria were also found in some starters. In case of fungi, Monascus sp. was dominant, whereas non-Saccharomyces yeast such as Saccharomycopsis fibuligera was detected. The microorganisms found in the nuruk starter are, in general, not significantly diverse compared with those found in the Hong Qu starter, with the exception of Monascus sp.; however, Hong Qu and nuruk both contain their own unique microbiota, which are quite diverse from each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tamang JP. Diversity of fermented beverages and alcoholic drinks. Chapter 3. pp. 85-125. In: Fermented Foods and Beverages of the World. Tamang JP, Kailasapathy K (eds). CRC Press, Boca Raton, FL, USA (2010)

    Chapter  Google Scholar 

  2. Huang HT. Science and civilisation in China. Vol. 6. pp. 149-283. In: Biology and Biological Technology. Part V: Fermentations and Food Science. Cambridge University Press, Cambridge, UK (2000)

    Google Scholar 

  3. Shurtleff W, Aoyagi A. History of koji-grains and/or soybeans enrobed with a mold culture (300 BCE to 2012): Extensively annotated bibliography and sourcebook. Soyinfo Center, Lafayette, CA, USA. pp. 19–613 (2012)

    Google Scholar 

  4. Huang F, Cai DT, Nip WK. Chinese Wines: Jiu. Vol. 149, Chapter. 173. In: Handbook of Food Science, Technology, and Engineering. Hui YH (ed). CRC Press, Boca Raton, FL, USA (2006)

    Google Scholar 

  5. Yang S, Lee J, Kwak J, Kim K, Seo M, Lee YW. Fungi associated with the traditional starter cultures used for rice wine in Korea. Appl. Biol. Chem. 54: 933–943 (2011)

    CAS  Google Scholar 

  6. Rong RJ, Li ZM, Wang DL, Bai ZH, Li HY, Rong RF, Ye L. Research progress on microorganisms in Chinese liquor Qu. China Brewing 6: 8 (2009)

    Google Scholar 

  7. Zhang ZY, Chang XX, Zhong QD. Liquor Qu fungus system and enzymatic system character and microbial dynamic variety during vintage. Liquor Making 5: e29 (2008)

    Google Scholar 

  8. Yamamoto S, Matsumoto T. Rice fermentation starters in Cambodia: Cultural importance and traditional methods of production. J. Southeast Asian Stud. 49: 192–213 (2011)

    Google Scholar 

  9. Dung NTP, Rombouts FM, Nout MJR. Characteristics of some traditional Vietnamese starch-based rice wine fermentation starters (men). LWT-Food Sci. Technol. 40: 130–135 (2007)

    Article  CAS  Google Scholar 

  10. Lv XC, Huang XL, Zhang W, Rao PF, Ni L. Yeast diversity of traditional alcohol fermentation starters for Hong Qu glutinous rice wine brewing, revealed by culture-dependent and culture-independent methods. Food Control 34: 183–190 (2013)

    Article  CAS  Google Scholar 

  11. Lv XC, Weng X, Zhang W, Rao PF, Ni L. Microbial diversity of traditional fermentation starters for Hong Qu glutinous rice wine as determined by PCRmediated DGGE. Food Control 28: 426–434 (2012)

    Article  CAS  Google Scholar 

  12. Lv XC, Cai QQ, Ke XX, Chen F, Rao PF, Ni L. Characterization of fungal community and dynamics during the traditional brewing of Wuyi Hong Qu glutinous rice wine by means of multiple culture-independent methods. Food Control 54: 231–239 (2015)

    Article  CAS  Google Scholar 

  13. Lv XC, Huang RL, Chen F, Zhang W, Rao PF, Ni L. Bacterial community dynamics during the traditional brewing of Wuyi Hong Qu glutinous rice wine as determined by culture-independent methods. Food Control 34: 300–306 (2013)

    Article  CAS  Google Scholar 

  14. Lv XC, Huang ZQ, Zhang W, Rao PF, Ni L. Identification and characterization of filamentous fungi isolated from fermentation starters for Hong Qu glutinous rice wine brewing. J. Gen. Appl. Microbiol. 58: 33–42 (2012)

    Article  CAS  Google Scholar 

  15. Erdogrul Ö, Azirak S. Review of the studies on the red yeast rice (Monascus purpureus). Turkish Electr. J. Biotechnol. 2: 37–49 (2004)

    Google Scholar 

  16. Heber D, Yip I, Ashley JM, Elashoff DA, Elashoff RM, Go VLW. Cholesterollowering effects of a proprietary Chinese red-yeast-rice dietary supplement. Am. J. Clin. Nutr. 69: 231–236 (1999)

    CAS  Google Scholar 

  17. Que F, Mao L, Pan X. Antioxidant activities of five Chinese rice wines and the involvement of phenolic compounds. Food Res. Int. 39: 581–587 (2006)

    Article  CAS  Google Scholar 

  18. Taira J, Miyagi C, Aniya Y. Dimerumic acid as an antioxidant from the mold, Monascus anka: The inhibition mechanisms against lipid peroxidation and hemeprotein-mediated oxidation. Biochem. Pharmacol. 63: 1019–1026 (2002)

    Article  CAS  Google Scholar 

  19. Yang JH, Tseng YH, Lee YL, Mau JL. Antioxidant properties of methanolic extracts from monascal rice. LWT-Food Sci. Technol. 39: 740–747 (2006)

    Article  CAS  Google Scholar 

  20. Pattanagul P, Pinthong R, Phianmongkhol A, Leksawasdi N. Review of angkak production (Monascus purpureus). Chiang Mai J. Sci. 34: 319–328 (2007)

    Google Scholar 

  21. Feng YL, Shao YC, Chen FS. Monascus pigments. Appl. Microbiol. Biot. 96: 1421–1440 (2012)

    Article  CAS  Google Scholar 

  22. Knecht A, Humpf HU. Cytotoxic and antimitotic effects of N-containing Monascus metabolites studied using immortalized human kidney epithelial cells. Mol. Nutr. Food Res. 50: 406–412 (2006)

    Article  CAS  Google Scholar 

  23. Martinkova L, Juzlova P, Vesely D. Biological activity of polyketide pigments produced by the fungus Monascus. J. Appl. Bacteriol. 79: 609–616 (1995)

    Article  CAS  Google Scholar 

  24. Vendruscolo F, Tosin I, Giachini AJ, Schmidell W, Ninow JL. Antimicrobial activity of Monascus pigments produced in submerged fermentation. J. Food Process Pres. 38: 1860–1865 (2014)

    Article  CAS  Google Scholar 

  25. Yasukawa K, Takahashi M, Natori S, Kawai K, Yamazaki M, Takeuchi M, Takido M. Azaphilones inhibit tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in 2-stage carcinogenesis in mice. Oncology 51: 108–112 (1994)

    Article  CAS  Google Scholar 

  26. Wu CL, Lee CL, Pan TM. Red mold dioscorea has a greater antihypertensive effect than traditional red mold rice in spontaneously hypertensive rats. J. Agr. Food Chem. 57: 5035–5041 (2009)

    Article  CAS  Google Scholar 

  27. Lin CP, Lin YL, Huang PH, Tsai HS, Chen YH. Inhibition of endothelial adhesion molecule expression by Monascus purpureus-fermented rice metabolites, monacolin K, ankaflavin, and monascin. J. Sci. Food Agr. 91: 1751–1758 (2011)

    Article  CAS  Google Scholar 

  28. Han S, Lei ZH, Li Q, Lu LH, Zhao LQ. Study on the cultured microbial community and the metabolism regulation during the brewing process of the Fen liquor. Food Ferment. Ind. 35: 9–13 (2009)

    Google Scholar 

  29. Lee AC, Fujio Y. Microflora of banh men, a fermentation starter from Vietnam. World J. Microb. Biot. 15: 51–55 (1999)

    Article  Google Scholar 

  30. Wang CL, Shi DJ, Gong GL. Microorganisms in Daqu: A starter culture of Chinese Maotai-flavor liquor. World J. Microb. Biot. 24: 2183–2190 (2008)

    Article  Google Scholar 

  31. Li ZX, Du JH, Wang XX, Ma M. Study on submerged fermentation conditions of a strain Monascus anka sp. producing pigment and glucoamylase. Food Ferment. Ind. 33: 77 (2007)

    Google Scholar 

  32. Ercolini D. PCR-DGGE fingerprinting: Novel strategies for detection of microbes in food. J. Microbiol. Meth. 56: 297–314 (2004)

    Article  CAS  Google Scholar 

  33. Sujaya IN, Nocianitri KA, Asano K. Diversity of bacterial flora of Indonesian ragi tape and their dynamics during the tape fermentation as determined by PCRDGGE. Int. Food Res. J. 17: 239–245 (2010)

    CAS  Google Scholar 

  34. Thanh VN, Mai LT, Tuan DA. Microbial diversity of traditional Vietnamese alcohol fermentation starters (banh men) as determined by PCR-mediated DGGE. Int. J. Food Microbiol. 128: 268–273 (2008)

    Article  CAS  Google Scholar 

  35. Chang HW, Kim KH, Nam YD, Roh SW, Kim MS, Jeon CO, Oh HM, Bae JW. Analysis of yeast and archaeal population dynamics in kimchi using denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 126: 159–166 (2008)

    Article  CAS  Google Scholar 

  36. Cocolin L, Manzano M, Aggio D, Cantoni C, Comi G. A novel polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) for the identification of Micrococcaceae strains involved in meat fermentations. Its application to naturally fermented Italian sausages. Meat Sci. 58: 59–64 (2001)

    CAS  Google Scholar 

  37. Omar NB, Ampe F. Microbial community dynamics during production of the Mexican fermented maize dough pozol. Appl. Environ. Microb. 66: 3664–3673 (2000)

    Article  Google Scholar 

  38. Limtong S, Sintara S, Suwannarit P, Lotong N. Yeast diversity in Thai traditional alcoholic starter._Kasetsart J. (Nat. Sci.) 36: 149–158 (2002)

    Google Scholar 

  39. Lu J, Cao Y, Fang H, Li WJ, Xie GF, Zou HJ, Hu ZM. Fungal community of wheat Qu of Shaoxing rice wine. J. Food Sci. Biotechnol. 2: e23 (2008)

    Google Scholar 

  40. Lv XC, Weng X, Huang RL, Zhang W, Rao PF, Ni L. Research on biodiversity of yeasts associated with Hong Qu glutinous rice wine starters and the traditional brewing process. J. Chinese Inst. Food Sci. Technol. 12: 182–190 (2012)

    Google Scholar 

  41. Wang HY, Gao YB, Fan QW, Xu Y. Characterization and comparison of microbial community of different typical Chinese liquor Daqusby PCR–DGGE. Lett. Appl. Microbiol. 53: 134–140 (2011)

    Article  CAS  Google Scholar 

  42. Xie GF, Li WJ, Lu J, Cao Y, Fang H, Zou HJ, Hu ZM. Isolation and identification of representative fungi from Shaoxing rice wine wheat Qu using a polyphasic approach of culture-based and molecular-based methods. J. I. Brewing 113: 272–279 (2007)

    Article  CAS  Google Scholar 

  43. Bleve G, Rizzotti L, Dellaglio F, Torriani S. Development of reverse transcription (RT)-PCR and real-time RT-PCR assays for rapid detection and quantification of viable yeasts and molds contaminating yogurts and pasteurized food products. Appl. Environ. Microb. 69: 4116–4122 (2003)

    Article  CAS  Google Scholar 

  44. Cao Y, Lu J, Fang H, Li WJ, Xie GF, Zou HJ, Hu ZM. Fungal diversity of wheat Qu of Shaoxing rice wine. Food Sci. 3: e282 (2008)

    Google Scholar 

  45. Chao SH, Wu RJ, Watanabe K, Tsai YC. Diversity of lactic acid bacteria in suantsai and fu-tsai, traditional fermented mustard products of Taiwan. Int. J. Food Microbiol. 135: 203–210 (2009)

    Article  Google Scholar 

  46. Shi JH, Xiao YP, Li XR, Ma EB, Du XW, Quan ZX. Analyses of microbial consortia in the starter of Fen Liquor. Lett. Appl. Microbiol. 48: 478–485 (2009)

    Article  Google Scholar 

  47. Wang Y, Cheng Q, Zhang Y, Lin WL. Study on predominant microflora in glutinous rice wine. China Brewing 5: 12–14 (2008)

    Google Scholar 

  48. Zhang X, Wu ZF, Zhang SC, Hu C, Zhang WX. Phylogenetic analysis of 18S rDNA sequence of mold from Luzhou-flavor Daqu. Chinese J. Appl. Environ. Biol. 17: 334–337 (2011)

    Article  CAS  Google Scholar 

  49. Li XR, Ma EB, Yan LZ, Meng H, Du XW, Zhang SW, Quan ZX. Bacterial and fungal diversity in the traditional Chinese liquor fermentation process. Int. J. Food Microbiol. 146: 31–37 (2011)

    Article  CAS  Google Scholar 

  50. Zheng XW, Tabrizi MR, Nout MJ, Han BZ. Daqu-a traditional Chinese liquor fermentation starter. J. I. Brewing 117: 82–90 (2011)

    Article  CAS  Google Scholar 

  51. Zheng XW, Yan Z, Han BZ, Zwietering MH, Samson RA, Boekhout T, Nout MJ. Complex microbiota of a Chinese “Fen” liquor fermentation starter (Fen-Daqu), revealed by culture-dependent and culture-independent methods. Food Microbiol. 31: 293–300 (2012)

    Article  CAS  Google Scholar 

  52. Yu TS, Kim J, Kim HS, Hyun JS, Ha HP, Park MG. Bibliographical study on microorganisms of nuruk (until 1945). J. Korean Soc. Food Sci. Nutr. 27: 789–799 (1998)

    Google Scholar 

  53. Kim HR, Baek SH, Seo MJ, Ahn BH. Feasibility of cheonghju brewing with wild type yeast strains from nuruks. Microbiol. Biotechnol. Lett. 34: 244–249 (2006)

    CAS  Google Scholar 

  54. Song SH, Lee CH, Lee SH, Park JM, Lee HJ, Bai DH, Yoon SS, Choi, JB, Park YS. Analysis of microflora profile in Korean traditional nuruk. J. Microbiol. Biotechnol. 23: 40–46 (2013)

    Article  CAS  Google Scholar 

  55. Bae KH, Shin KS, Ryu HY, Kwon CS, Sohn HY. Identification and fermentation characteristics of lactic acid bacteria isolated from the fermentation broth of Korean traditional liquor, Andong-Soju. Microbiol. Biotechnol. Lett. 35: 310–315 (2007)

    CAS  Google Scholar 

  56. Park JW, Lee KH, Lee CY. Identification of filamentous molds isolated from Korean traditional nuruk and their amylolytic activities. Microbiol. Biotechnol. Lett. 23: 737–746 (1995)

    Google Scholar 

  57. Viana F, Gil JV, Genovés S, Valles S, Manzanares P. Rational selection of non-Saccharomyces wine yeasts for mixed starters based on ester formation and enological traits. Food Microbiol. 25: 778–785 (2008)

    Article  CAS  Google Scholar 

  58. Ha DM, Kim DC, Hong SM, Lee CW. Identification and properties of starch utilizing yeasts isolated from Nuruk. J. Appl. Biol. Chem. 32: 408–415 (1989)

    CAS  Google Scholar 

  59. Wu Q, Chen L, Xu Y. Yeast community associated with the solid state fermentation of traditional Chinese Maotai-flavor liquor. Int. J. Food Microbiol. 166: 323–330 (2013)

    Article  CAS  Google Scholar 

  60. Lee HH, Lee JH, Ko YJ, Park MH, Lee JO, Ryo CH. Changes in allergenicity and quality of Nuruk during fermentation. J. Korean Soc. Food Sci. Nutr. 38: 76–82 (2009)

    Article  CAS  Google Scholar 

  61. Yoshizaki Y, Susuki T, Takamine K, Tamaki H, Ito K, Sameshima Y. Characterization of glucoamylase and a-amylase from Monascus anka: enhanced production of á-amylase in red koji. J. Biosci. Bioeng. 110: 670–674 (2010)

    Article  CAS  Google Scholar 

  62. Chi Z, Chi Z, Liu G, Wang F, Ju L, Zhang T. Saccharomycopsis fibuligera and its applications in biotechnology. Biotechnol. Adv. 27: 423–431 (2009)

    Article  CAS  Google Scholar 

  63. Tovar L, Salafranca J, Sánchez C, Nerin C. Migration studies to assess the safety in use of a new antioxidant active packaging. J. Agr. Food Chem. 53: 5270–5275 (2005)

    Article  CAS  Google Scholar 

  64. Nerín C, Tovar L, Djenane D, Camo J, Salafranca J, Beltran J A, Roncales P. Stabilization of beef meat by a new active packaging containing natural antioxidants. J. Agr. Food Chem. 54: 7840–7846 (2006)

    Article  Google Scholar 

  65. Dikshit R, Tallapragada P. Monascus purpureus: A potential source for natural pigment production. J. Microbiol. Biotechnol. Res. 1: 164–174 (2011)

    CAS  Google Scholar 

  66. Dufossé L. Microbial production of food grade pigments. Food Technol. Biotech. 44: 313–321 (2006)

    Google Scholar 

  67. Fabre CE, Santerre AL, Loret MO, Baberian R, Pareilleux A, Goma G, Blanc PJ. Production and food applications of the red pigments of Monascus ruber. J. Food Sci. 58: 1099–1102 (1993)

    Article  CAS  Google Scholar 

  68. Mapari SAS, Thrane U, Meyer AS. Fungal polyketideazaphilone pigments as future natural food colorants? Trends Biotechnol. 28: 300–307 (2010)

    Article  CAS  Google Scholar 

  69. Carels M, Shepherd D. The effect of different nitrogen sources on pigment production and sporulation of Monascus species in submerged, shaken culture. Can. J. Microbiol. 23: 1360–1372 (1977)

    Article  CAS  Google Scholar 

  70. Lim HS, Yoo SK, Shin CS, Hyun YM. Monascus red pigment overproduction by coculture with recombinant Saccharomyces cerevisiae secreting glucoamylase. J. Microbiol. 38: 48–51 (2000)

    CAS  Google Scholar 

  71. Miyake T, Mori A, Kii T, Okuno T, Usui Y, Sato F, Sammoto H, Watanabe A, Kariyama M. Light effects on cell development and secondary metabolism in Monascus. J. Ind. Microbiol. Biot. 32: 103–108 (2005)

    Article  CAS  Google Scholar 

  72. Mukherjee G, Singh SK. Purification and characterization of a new red pigment from Monascus purpureus in submerged fermentation. Process Biochem. 46: 188–192 (2011)

    Article  CAS  Google Scholar 

  73. Babitha S, Soccol CR, Pandey A. Solid-state fermentation for the production of Monascus pigments from jackfruit seed. Bioresource Technol. 98: 1554–1560 (2007)

    Article  CAS  Google Scholar 

  74. Lee BK, Park NH, Piao HY, Chung WJ. Production of red pigments by Monascus purpureus in submerged culture. Biotechnol. Bioproc. E. 6: 341–346 (2001)

    Article  CAS  Google Scholar 

  75. Ahn J, Jung J, Hyung W, Haam S, Shin C. Enhancement of Monascus pigment production by the culture of Monascus sp. J101 at low temperature. Biotechnol. Progr. 22: 338–340 (2006)

    Article  CAS  Google Scholar 

  76. Jung HY, Kim CY, Shin CS. Enhanced photostability of Monascus pigments derived with various amino acids via fermentation. J. Agr. Food Chem. 53: 7108–7114 (2005)

    Article  CAS  Google Scholar 

  77. Jung HY, Kim CY, Kim K, Shin CS. Color characteristics of Monascus pigments derived by fermentation with various amino acids. J. Agr. Food Chem. 51: 1302–1306 (2003)

    Article  CAS  Google Scholar 

  78. Shi K, Song D, Chen G, Pistolozzi M, Wu Z, Quan L. Controlling composition and color characteristics of Monascus pigments by pH and nitrogen sources in submerged fermentation. J. Biosci. Bioeng. 120: 145–154 (2015)

    Article  CAS  Google Scholar 

  79. Wang B, Zhang X, Wu Z, Wang Z. Investigation of relationship between lipid and Monascus pigment accumulation by extractive fermentation. J. Biotechnol. 212: 167–173 (2015)

    Article  CAS  Google Scholar 

  80. Carels M, Shepherd D. The effect of changes in pH on phosphate and potassium uptake by Monascus rubiginosus ATCC 16367 in submerged shaken culture. Can. J. Microbiol. 25: 1484–1488 (1979)

    Article  CAS  Google Scholar 

  81. Huang L, Cheng X, Wei SJ, Tu XR, Li KT. Research on the stability for Monascus pigment produced by Monascus purpureus JR. China Condiment 36: 93–96 (2011)

    Google Scholar 

  82. Li HR, Du ZW, Zhang JR. Study on the stability of Monascus pigment. Food Sci. 24: 59–62 (2003)

    Google Scholar 

  83. Shehata HA, Buckenhuskes HJ, El-Zoghbi MS. Colour optimization of Egyptian fresh beef sausage by natural colorants. Fleischwirtschaft (Germany) 78: 68–71 (1998)

    CAS  Google Scholar 

  84. Hong MY, Seeram NP, Zhang YJ, Heber D. Anticancer effects of Chinese red yeast rice versus monacolin K alone on colon cancer cells. J. Nutr. Biochem. 19: 448–458 (2008)

    Article  CAS  Google Scholar 

  85. Mostafa ME, Abbady MS. Secondary metabolites and bioactivity of the Monascus pigments review article. Global J. Biotechnol. Biochem. 9: 1–13 (2014)

    CAS  Google Scholar 

  86. Kaur B, Chakraborty D, Kaur H. Production and evaluation of physicochemical properties of red pigment from Monascus purpureus MTCC 410. Internet J. Microbiol. 7: 1–7 (2009)

    Google Scholar 

  87. Hajjaj H, François JM, Goma G, Blanc PJ. Effect of amino acids on red pigments and citrinin production in Monascus ruber. J. Food Sci. 77: M156–M159 (2012)

    Article  CAS  Google Scholar 

  88. Goswami S, Vidyarthi AS, Bhunia B, Manadal T. A review on lovastatin and its production. J. Biochem. Technol. 4: 581–587 (2012)

    CAS  Google Scholar 

  89. Kennedy J, Auclair K, Kendrew SG, Park CS, Vederas JC, Hutchinson CR. Modulation of polyketide synthase activity by accessory proteins during lovastatin biosynthesis. Science 284: 1368–1372 (1999)

    Article  CAS  Google Scholar 

  90. Zheng Y, Xin Y, Shi X, Guo Y. Anti-cancer effect of rubropunctatin against human gastric carcinoma cells BGC-823. Appl. Microbiol. Biot. 88: 1169–1177 (2010)

    Article  CAS  Google Scholar 

  91. Choe DK, Lee JY, Woo SH, Shin CS. Evaluation of the amine derivatives of Monascus pigment with anti-obesity activities. Food Chem. 134: 315–323 (2012)

    Article  CAS  Google Scholar 

  92. Man RYK, Lynn EG, Cheung F, Tsang PSY, O K. Cholestin inhibits cholesterol synthesis and secretion in hepatic cells (HepG2). Mol. Cell. Biochem. 233: 153–158 (2002)

    Article  CAS  Google Scholar 

  93. Blanc PJ, Loret MO, Goma G. Production of citrinin by various species of Monascus. Biotechnol. Lett. 17: 291–294 (1995)

    Article  CAS  Google Scholar 

  94. Shimizu T, Kinoshita H, Ishihara S, Sakai K, Nagai S, Nihira T. Polyketide synthase gene responsible for citrinin biosynthesis in Monascus purpureus. Appl. Environ. Microb. 71: 3453–3457 (2005)

    Article  CAS  Google Scholar 

  95. Lee CH, Lee CL, Pan TM. A 90-d toxicity study of Monascus-fermented products including high citrinin level. J. Food Sci. 75: T91–97 (2010)

    Article  CAS  Google Scholar 

  96. Chen YP, Tseng CP, Liaw LL, Wang CL, Chen IC, Wu WJ, Wu MD, Yuan GF. Cloning and characterization of monacolin K biosynthetic gene cluster from Monascus pilosus. J. Agr. Food Chem. 56: 5639–5646 (2008)

    Article  CAS  Google Scholar 

  97. Akihisa T, Tokuda H, Yasukawa K, Ukiya M, Kiyota A, Sakamoto N, Suzuki T, Tanabe N, Nishino H. Azaphilones, furanoisophthalides, and amino acids from the extracts of Monascus pilosus-fermented rice (red-mold rice) and their chemopreventive effects. J. Agr. Food Chem. 53: 562–565 (2005)

    Article  CAS  Google Scholar 

  98. Su NW, Lin YL, Lee MH, Ho CY. Ankaflavin from Monascus fermented red rice exhibits selective cytotoxic effect and induces cell death on Hep G2 cells. J. Agr. Food Chem. 53: 1949–1954 (2005)

    Article  CAS  Google Scholar 

  99. Lee CL, Kung YH, Wu CL, Hsu YW, Pan TM. Monascin and ankaflavin act as a novel hypolipidemic and high-density lipoprotein cholesterol-raising agents in red mold dioscorea. J. Agr. Food Chem. 58: 9013–9019 (2010)

    Article  CAS  Google Scholar 

  100. Shi YC, Liao VHC, Pan TM. Monascin from red mold dioscorea as a novel antidiabetic and antioxidative stress agent in rats and Caenorhabditis elegans. Free Radical Bio. Med. 52: 109–117 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Ni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, K.H., Liu, Z., Park, CS. et al. Microbiota associated with the starter cultures and brewing process of traditional Hong Qu glutinous rice wine. Food Sci Biotechnol 25, 649–658 (2016). https://doi.org/10.1007/s10068-016-0115-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-016-0115-6

Keywords

Navigation