Skip to main content
Log in

Aged ginseng (Panax ginseng Meyer) reduces blood glucose levels and improves lipid metabolism in high fat diet-fed mice

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Aged ginseng is unpeeled ginseng root that has been dried and heat-treated in an oven at 80°C for 14 days. The effects of aged ginseng, in comparison with white and red ginseng, on the lipid and glucose metabolism in high fat-fed mice were investigated. C57BL/6N mice were randomly divided into six dietary groups of normal control, high fat, and high fat supplemented with white, red, aged four-year old, and aged five-year old ginseng. After 8 weeks, ginseng counteracted high fat dietinduced body weight gain, hyperlipidemia, and hyperglycemia via a mechanism involving modulation of hepatic lipogenesis, adipokine production, and glucose-regulating enzyme activities. Aged ginseng showed greater antihyperlipidemic and antihyperglycemic activities than white ginseng and exhibited physiological effects similar to red ginseng, perhaps due to a relatively high ginsenoside content. Aged ginseng can be beneficial as a functional food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Soldati F. Ginseng, Asian (Panax ginseng). pp. 265–277. In: Encyclopedia of Dietary Supplements. Coates P, Blackman M, Cragg G, Levine M, Moss J, White J (eds). Marcel Dekker, New York, NY, USA. (2005)

    Google Scholar 

  2. Hong YJ, Kim N, Lee K, Sonn CH, Lee JE, Kim ST. Korean red ginseng (Panax ginseng) ameliorates type 1 diabetes and restores immune cell compartments. J. Pharmacol. 144: 225–233 (2012)

    CAS  Google Scholar 

  3. Lee MR, Yun BS, Sung CK. Comparative study of white and steamed black Panax ginseng, P. quinquefolium, and P. notoginseng on cholinesterase inhibitory and antioxidative activity. J. Ginseng Res. 36: 93–101 (2012)

    Article  Google Scholar 

  4. Lee H, Park D, Yoon M. Korean red ginseng (Panax ginseng) prevents obesity by inhibiting angiogenesis in high fat diet-induce obese C57BL/6J mice. Food Chem. Toxicol. 53: 402–408 (2013)

    Article  CAS  Google Scholar 

  5. Song YB, An YR, Kim SJ, Park HW, Jung JW, Kyung JS. Lipid metabolic effect of Korean red ginseng extract in mice fed on a high fat diet. J. Sci. Food Agr. 92: 388–396 (2012)

    Article  CAS  Google Scholar 

  6. Jia L, Zhao Y. Current evaluation of the millennium phytomedicine-ginseng (1): Etymology, pharmacognosy, phytochemistry, market and regulations. Curr. Med. Chem. 16: 2475–2484 (2009)

    Article  CAS  Google Scholar 

  7. Li X, Yan YZ, Jin X, Kim YK, Uddin MR, Kim YB. Ginsenoside content in the leaves and roots of Panax ginseng at different ages. Life Sci. J. 9: 679–683 (2012)

    Google Scholar 

  8. Chung IM, Kim JW, Seguin P, Jun YM, Kim SH. Ginsenosides and phenolics in fresh and processed Korean ginseng (Panax ginseng C.A. Meyer): Effects of cultivation location, year, and storage period. Food Chem. 130: 73–83 (2012)

    Article  CAS  Google Scholar 

  9. Sohn SH, Kim SK, Kim YO, Kim HD, Shin YS, Yang SO. A comparison of antioxidant activity of Korean white and red ginsengs on H2O2-induced oxidative stress in HepG2 hepatoma cells. J. Ginseng Res. 37: 442–450 (2013)

    Article  CAS  Google Scholar 

  10. Bae HJ, Chung SI, Lee SC, Kang MY. Influence of aging process on the bioactive components and antioxidant activity of ginseng (Panax ginseng L.). J. Food Sci. 79: H2127–H2131 (2014)

    Article  CAS  Google Scholar 

  11. Jochum GM, Mudge KW, Thomas RB. Elevated temperatures increase leaf senescence and root secondary metabolite concentrations in the understory herb Panax quinquefolius (Araliaceae). Am. J. Bot. 94: 819–826 (2007)

    Article  CAS  Google Scholar 

  12. Seifter S, Dayton S, Navic B, Muntwyler E. The estimation of glycogen with the anthrone reagent. Arch. Biochem. 25: 191–200 (1950)

    CAS  Google Scholar 

  13. Hulcher FH, Oleson WH. Simplified spectrophotometric assay for microsomal 3-hydroxy-3-methylglutaryl CoA reductase by measurement of coenzyme A. J. Lipid Res. 14: 625–631 (1973)

    CAS  Google Scholar 

  14. Gibson DM, Hubbard DD. Incorporation of malonyl CoA into fatty acids by liver in starvation and alloxan-diabetes. Biochem. Bioph. Res. Co. 3: 531–535 (1960)

    Article  CAS  Google Scholar 

  15. Ochoa S. Malic dehydrogenase from pig heart. pp. 735–739. In: Methods in Enzymology. Colowick SP, Kaplan NO (eds). Academic Press, New York, NY, USA (1955)

    Google Scholar 

  16. Pitkanen E, Pitkanen O, Uotila L. Enzymatic determination of unbound Dmannose in serum. Eur. J. Clin. Chem. Clin. 35: 761–766 (1997)

    CAS  Google Scholar 

  17. Davidson AL, Arion WJ. Factors underlying significant underestimations of glucokinase activity in crude liver extracts: Physiological implications of higher cellular activity. Arch. Biochem. Biophys. 253: 156–167 (1987)

    Article  CAS  Google Scholar 

  18. Bentle L A, Lardy H A. I nteraction of anions a nd divalent m etal i ons with phosphoenolpyruvate carboxykinase. J. Biol. Chem. 251: 2916–2921 (1976)

    CAS  Google Scholar 

  19. Alegre M, Ciudad CJ, Fillat C, Guinovart JJ. Determination of glucose-6-phosphatase activity using the glucose dehydrogenase-coupled reaction. Anal. Biochem. 173: 185–189 (1988)

    Article  CAS  Google Scholar 

  20. Karu N, Reifen R, Kerem Z. Weight gain reduction in mice fed Panax ginseng saponin, a pancreatic lipase inhibitor. J. Agr. Food Chem. 55: 2824–2828 (2007)

    Article  CAS  Google Scholar 

  21. Kim JH, Hahm DH, Yang DC, Kim JH, Lee HJ, Shim I. Effect of crude saponin of Korean red ginseng on high-fat diet-induced obesity in the rat. J. Pharmacol. Sci. 97: 124–131 (2005)

    Article  CAS  Google Scholar 

  22. Gallou-Kabani C, Vige A, Gross MS, Rabes JP, Boileau C, Larue-Archagiotis C. C57BL/6J and A/J mice fed a high-fat diet delineate components of metabolic syndrome. Obesit. 15: 1996–2005 (2007)

    Article  CAS  Google Scholar 

  23. Zuliani G, Vigna GB, Felin R. The anti-atherogenic properties of HDL particles. Int. Congr. Ser. 1303: 103–110 (2007)

    Article  CAS  Google Scholar 

  24. Al Kanhal MA, Ahmad F, Al Othman AA, Al Orf S, Al Murshed KS. Effect of pure and oxidized cholesterol-rich diet on some biochemical parameters in rats. Int. J. Food Sci. Nutr. 53: 381–388 (2002)

    Article  Google Scholar 

  25. Yin J, Zhang H, Ye J. Traditional Chinese medicine in treatment of metabolic syndrome. Endocr. Metab. Immune Disord. Drug Target. 8: 99–111 (2008)

    Article  CAS  Google Scholar 

  26. Cho WC, Chung WS, Lee SK, Leung AW, Cheng CH, Yue KK. Ginsenoside Re of Panax ginseng possesses significant antioxidant and antihyperlipidemic efficacies in streptozotocin-induced diabetic rats. Eur. J. Pharmacol. 550: 173–179 (2006)

    Article  CAS  Google Scholar 

  27. Yuan HD, Kim DY, Quan HY, Kim SJ, Jung MS, Chung SH. Ginsenoside Rg2 induces orphan nuclear receptor SHP gene expression and inactivates GSK3b via AMP-activated protein kinase to inhibit hepatic glucose production in HepG2 cells. Chem.-Biol. Interact. 195: 35–42 (2012)

    Article  CAS  Google Scholar 

  28. Silha JV, Weiler HA, Murphy LJ. Plasma adipokines and body composition in response to modest dietary manipulations in the mouse. Obesit. 14: 1320–1329 (2006)

    Article  CAS  Google Scholar 

  29. Trayhurn P, Wood IS. Signalling role of adipose tissue: Adipokines and inflammation in obesity. Biochem. Soc. T. 33: 1078–1081 (2005)

    Article  CAS  Google Scholar 

  30. Wang Y, Lam KS, Xu A. Adiponectin as a therapeutic target for obesity-related metabolic and cardiovascular disorders. Drug Develop. Res. 67: 677–686 (2006)

    Article  CAS  Google Scholar 

  31. Halminski MA, Marsh JB, Harrison EH. Differential effects of fish oil, safflower oil and palm oil on fatty acid oxidation and glycerolipid synthesis in rat liver. J. Nutr. 121: 1554–1561 (1991)

    CAS  Google Scholar 

  32. Park J, Rho HK, Kim KH, Choi SS, Lee YS, Kim JB. Overexpression of glucose-6-phosphate dehydrogenase is associated with lipid dysregulation and insulin resistance in obesity. Mol. Cell. Biol. 25: 5146–5157 (2005)

    Article  CAS  Google Scholar 

  33. She P, Shiota M, Shelton KD, Chalkley R, Postic C, Magnuson MA. Phosphoenolpyruvate carboxykinase is necessary for the integration of hepatic energy metabolism. Mol. Cell. Biol. 20: 6508–6517 (2000)

    Article  CAS  Google Scholar 

  34. Van Schaftingen E, Gerin I. The glucose-6-phosphatase system. Biochem. J. 362: 513–532 (2002)

    Article  Google Scholar 

  35. Coope GJ, Atkinson AM, Allott C, McKerrecher D, Johnstone C, Pike KG. Predictive blood glucose lowering efficacy by glucokinase activators in high fat fed female zucker rats. Brit. J. Pharmacol. 149: 328–335 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Chul Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, S.I., Nam, S.J., Xu, M. et al. Aged ginseng (Panax ginseng Meyer) reduces blood glucose levels and improves lipid metabolism in high fat diet-fed mice. Food Sci Biotechnol 25, 267–273 (2016). https://doi.org/10.1007/s10068-016-0039-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-016-0039-1

Keywords

Navigation