Skip to main content

Ginsenosides in Diets

  • Reference work entry
  • First Online:
Handbook of Dietary Phytochemicals

Abstract

Ginseng and its active ingredient ginsenosides are valued for their medicinal properties. More than 100 ginsenosides have been identified from the different parts of the plants in the genus Panax and during the processing of the plants. Ginsenosides can increase longevity, reduce blood pressure, alleviate diabetes and cardiovascular diseases, and inhibit cancers. Ginseng is widely used to prepare porridge, soup, and tea. Ginseng products range from neutraceuticals and cosmoceuticals to functional food. No adverse effects of consuming Panax ginseng or its extract were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bu QT, Zhang WY, Chen QC, Zhang CZ, Gong XJ, Liu WC, Li W, Zheng YN (2012) Anti-diabetic effect of ginsenoside Rb(3) in alloxan-induced diabetic mice. Med Chem 8:934–941

    Article  CAS  PubMed  Google Scholar 

  • Chan PC, Peckham JC, Malarkey DE, Kissling GE, Travlos GS, Fu PP (2011) Two-year toxicity and carcinogenicity studies of Panax ginseng in Fischer 344 rats and B6C3F1 mice. Am J Chin Med 39(4):779–788

    Article  PubMed  Google Scholar 

  • Chen CF, Chiou WF, Zhang JT (2008) Comparison of the pharmacological effects of Panax ginseng and Panax quinquefolius. Acta Pharmacol Sin 29:1103–1108

    Article  CAS  PubMed  Google Scholar 

  • Chen HF, Wu LX, Li XF, Zhu YC, Wang WX, Xu CW, Huang ZZ, Du KQ (2019) Ginsenoside compound K inhibits growth of lung cancer cells via HIF-1alpha-mediated glucose metabolism. Cell Mol Biol (Noisy-le-Grand) 65:48–52

    Article  Google Scholar 

  • Chu S, Gu J, Feng L, Liu J, Zhang M, Jia X, Liu M, Yao D (2014) Ginsenoside Rg5 improves cognitive dysfunction and beta-amyloid deposition in STZ-induced memory impaired rats via attenuating neuroinflammatory responses. Int Immunopharmacol 19:317–326

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Su Y, Deng L, Wang W (2018) Ginsenoside-Rg5 inhibits retinoblastoma proliferation and induces apoptosis through suppressing BCL2 expression. Chemotherapy 63:293–300

    Article  CAS  PubMed  Google Scholar 

  • Ernst E (2010) Panax ginseng: An overview of the clinical evidence. J Ginseng Res 34:259–263

    Article  Google Scholar 

  • Fang F, Chen X, Huang T, Lue LF, Luddy JS, Yan SS (2012) Multi-faced neuroprotective effects of Ginsenoside Rg1 in an Alzheimer mouse model. Biochim Biophys Acta 1822:286–292

    Article  CAS  PubMed  Google Scholar 

  • Fuzzati N (2004) Analysis methods of ginsenosides. J Chromatogr B Analyt Technol Biomed Life Sci 812:119–133

    Article  CAS  PubMed  Google Scholar 

  • Gao Q, Zheng J (2018) Ginsenoside Rh2 inhibits prostate cancer cell growth through suppression of microRNA-4295 that activates CDKN1A. Cell Prolif 51:e12438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao Y, Chu S, Li J, Li J, Zhang Z, Xia C, Heng Y, Zhang M, Hu J, Wei G et al (2015) Anti-inflammatory function of ginsenoside Rg1 on alcoholic hepatitis through glucocorticoid receptor related nuclear factor-kappa B pathway. J Ethnopharmacol 173:231–240

    Article  CAS  PubMed  Google Scholar 

  • Ge G, Yan Y, Cai H (2017) Ginsenoside Rh2 inhibited proliferation by inducing ROS mediated ER stress dependent apoptosis in lung cancer cells. Biol Pharm Bull 40:2117–2124

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Yang T, Lu J, Li S, Wan L, Long D, Li Q, Feng L, Li Y (2011) Rb1 postconditioning attenuates liver warm ischemia-reperfusion injury through ROS-NO-HIF pathway. Life Sci 88:598–605

    Article  CAS  PubMed  Google Scholar 

  • Hwang E, Park S, Yin C, Kim H, Kim Y, Yi T (2017) Antiaging effects of the mixture of Panax ginseng and Crataegus pinnatifida in human dermal fibroblasts and healthy human skin. J Ginseng Res 41(1):69–77

    Article  PubMed  Google Scholar 

  • Joh EH, Lee IA, Jung IH, Kim DH (2011) Ginsenoside Rb1 and its metabolite compound K inhibit IRAK-1 activation – the key step of inflammation. Biochem Pharmacol 82:278–286

    Article  CAS  PubMed  Google Scholar 

  • Jovanovski E, Bateman EA, Bhardwaj J, Fairgrieve C, Mucalo I, Jenkins AL, Vuksan V (2014a) Effect of Rg3-enriched Korean red ginseng (Panax ginseng) on arterial stiffness and blood pressure in healthy individuals: a randomized controlled trial. J Am Soc Hypertens 8:537–541

    Article  CAS  PubMed  Google Scholar 

  • Jovanovski E, Peeva V, Sievenpiper JL, Jenkins AL, Desouza L, Rahelic D, Sung MK, Vuksan V (2014b) Modulation of endothelial function by Korean red ginseng (Panax ginseng C.A. Meyer) and its components in healthy individuals: a randomized controlled trial. Cardiovasc Ther 32:163–169

    Article  CAS  PubMed  Google Scholar 

  • Jung JS, Kim DH, Kim HS (2010) Ginsenoside Rh1 suppresses inducible nitric oxide synthase gene expression in IFN-gamma-stimulated microglia via modulation of JAK/STAT and ERK signaling pathways. Biochem Biophys Res Commun 397:323–328

    Article  CAS  PubMed  Google Scholar 

  • Kang T, Park H, Kim Y (2009) Effects of red ginseng extract on UVB irradiation-induced skin aging in hairless mice. J Ethnopharmacol 123(3):446–451

    Article  CAS  PubMed  Google Scholar 

  • Kim TW, Joh EH, Kim B, Kim DH (2012) Ginsenoside Rg5 ameliorates lung inflammation in mice by inhibiting the binding of LPS to toll-like receptor-4 on macrophages. Int Immunopharmacol 12:110–116

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Chung JH, Yoon JS, Ha YM, Bae S, Lee EK, Jung KJ, Kim MS, Kim YJ, Kim MK et al (2013a) Ginsenoside Rd inhibits the expressions of iNOS and COX-2 by suppressing NF-kappaB in LPS-stimulated RAW264.7 cells and mouse liver. J Ginseng Res 37:54–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim EJ, Jung IH, Van Le TK, Jeong JJ, Kim NJ, Kim DH (2013b) Ginsenosides Rg5 and Rh3 protect scopolamine-induced memory deficits in mice. J Ethnopharmacol 146:294–299

    Article  CAS  PubMed  Google Scholar 

  • Kim SS, Jang HJ, Oh MY, Eom DW, Kang KS, Kim YJ, Lee JH, Ham JY, Choi SY, Wee YM et al (2014) Ginsenoside Rg3 enhances islet cell function and attenuates apoptosis in mouse islets. Transplant Proc 46:1150–1155

    Article  CAS  PubMed  Google Scholar 

  • Lee JG, Lee YY, Wu B, Kim SY, Lee YJ, Yun-Choi HS, Park JH (2010a) Inhibitory activity of ginsenosides isolated from processed ginseng on platelet aggregation. Pharmazie 65:520–522

    CAS  PubMed  Google Scholar 

  • Lee TK, O’Brien KF, Wang W, Johnke RM, Sheng C, Benhabib SM, Wang T, Allison RR (2010b) Radioprotective effect of American ginseng on human lymphocytes at 90 minutes postirradiation: a study of 40 cases. J Altern Complement Med 16:561–567

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee IA, Hyam SR, Jang SE, Han MJ, Kim DH (2012) Ginsenoside Re ameliorates inflammation by inhibiting the binding of lipopolysaccharide to TLR4 on macrophages. J Agric Food Chem 60:9595–9602

    Article  CAS  PubMed  Google Scholar 

  • Lee B, Sur B, Park J, Kim SH, Kwon S, Yeom M, Shim I, Lee H, Hahm DH (2013) Ginsenoside rg3 alleviates lipopolysaccharide-induced learning and memory impairments by anti-inflammatory activity in rats. Biomol Ther (Seoul) 21:381–390

    Article  CAS  Google Scholar 

  • Lee SY, Jeong JJ, Eun SH, Kim DH (2015) Anti-inflammatory effects of ginsenoside Rg1 and its metabolites ginsenoside Rh1 and 20(S)-protopanaxatriol in mice with TNBS-induced colitis. Eur J Pharmacol 762:333–343

    Article  CAS  PubMed  Google Scholar 

  • Leung KW, Leung FP, Huang Y, Mak NK, Wong RN (2007) Non-genomic effects of ginsenoside-Re in endothelial cells via glucocorticoid receptor. FEBS Lett 581:2423–2428

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhong W, Wang W, Hu S, Yuan J, Zhang B, Hu T, Song G (2014a) Ginsenoside metabolite compound K promotes recovery of dextran sulfate sodium-induced colitis and inhibits inflammatory responses by suppressing NF-kappaB activation. PLoS One 9:e87810

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li JP, Gao Y, Chu SF, Zhang Z, Xia CY, Mou Z, Song XY, He WB, Guo XF, Chen NH (2014b) Nrf2 pathway activation contributes to anti-fibrosis effects of ginsenoside Rg1 in a rat model of alcohol- and CCl4-induced hepatic fibrosis. Acta Pharmacol Sin 35:1031–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li LC, Piao HM, Zheng MY, Lin ZH, Choi YH, Yan GH (2015) Ginsenoside Rh2 attenuates allergic airway inflammation by modulating nuclear factor-kappaB activation in a murine model of asthma. Mol Med Rep 12:6946–6954

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Fan D (2018) Ginsenoside Rg5 induces apoptosis and autophagy via the inhibition of the PI3K/Akt pathway against breast cancer in a mouse model. Food Funct 9:5513–5527

    Article  CAS  PubMed  Google Scholar 

  • Liu DH, Chen YM, Liu Y, Hao BS, Zhou B, Wu L, Wang M, Chen L, Wu WK, Qian XX (2012) Ginsenoside Rb1 reverses H2O2-induced senescence in human umbilical endothelial cells: involvement of eNOS pathway. J Cardiovasc Pharmacol 59:222–230

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Zhao J, Fu R, Zhu C, Fan D (2019) The ginsenoside Rk3 exerts anti-esophageal cancer activity in vitro and in vivo by mediating apoptosis and autophagy through regulation of the PI3K/Akt/mTOR pathway. PLoS One 14:e0216759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma L, Liu H, Xie Z, Yang S, Xu W, Hou J, Yu B (2014) Ginsenoside Rb3 protects cardiomyocytes against ischemia-reperfusion injury via the inhibition of JNK-mediated NF-kappaB pathway: a mouse cardiomyocyte model. PLoS One 9:e103628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Niki E, Yoshida Y, Saito Y, Noguchi N (2005) Lipid peroxidation: mechanisms, inhibition, and biological effects. Biochem Biophys Res Commun 338:668–676

    Article  CAS  PubMed  Google Scholar 

  • Pan C, Huo Y, An X, Singh G, Chen M, Yang Z, Pu J, Li J (2012) Panax notoginseng and its components decreased hypertension via stimulation of endothelial-dependent vessel dilatation. Vasc Pharmacol 56:150–158

    Article  CAS  Google Scholar 

  • Park HM, Kim SJ, Mun AR, Go HK, Kim GB, Kim SZ, Jang SI, Lee SJ, Kim JS, Kang HS (2012) Korean red ginseng and its primary ginsenosides inhibit ethanol-induced oxidative injury by suppression of the MAPK pathway in TIB-73 cells. J Ethnopharmacol 141:1071–1076

    Article  CAS  PubMed  Google Scholar 

  • Park SJ, Lim KY, Noh JH, Jeong EU, Kim YS, Han BC, Moon KS (2013) Subacute oral toxicity study of Korean red ginseng extract in Sprague-Dawley Rats. Toxicology Research 29(4):285–292

    Article  Google Scholar 

  • Peng Y, Zhang R, Yang X, Zhang Z, Kang N, Bao L, Shen Y, Yan H, Zheng F (2019) Ginsenoside Rg3 suppresses the proliferation of prostate cancer cell line PC3 through ROS-induced cell cycle arrest. Oncol Lett 17:1139–1145

    CAS  PubMed  Google Scholar 

  • Rhee MY, Cho B, Kim KI, Kim J, Kim MK, Lee EK, Kim HJ, Kim CH (2014) Blood pressure lowering effect of Korea ginseng derived ginseol K-g1. Am J Chin Med 42:605–618

    Article  CAS  PubMed  Google Scholar 

  • Shin BK, Kwon SW, Park JH (2015) Chemical diversity of ginseng saponins from Panax ginseng. J Ginseng Res 39:287–298

    Article  PubMed  PubMed Central  Google Scholar 

  • Siegel RK (1979) Ginseng abuse syndrome. Problems with the panacea. JAMA 241:1614–1615

    Article  CAS  PubMed  Google Scholar 

  • Sun MY, Song YN, Zhang M, Zhang CY, Zhang LJ, Zhang H (2019) Ginsenoside Rg3 inhibits the migration and invasion of liver cancer cells by increasing the protein expression of ARHGAP9. Oncol Lett 17:965–973

    CAS  PubMed  Google Scholar 

  • Tao T, Chen F, Bo L, Xie Q, Yi W, Zou Y, Hu B, Li J, Deng X (2014) Ginsenoside Rg1 protects mouse liver against ischemia-reperfusion injury through anti-inflammatory and anti-apoptosis properties. J Surg Res 191:231–238

    Article  PubMed  Google Scholar 

  • Wang W, Rayburn ER, Hao M, Zhao Y, Hill DL, Zhang R, Wang H (2008) Experimental therapy of prostate cancer with novel natural product anti-cancer ginsenosides. Prostate 68:809–819

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Yu X, Qu S, Xu H, Han B, Sui D (2010a) Effect of ginsenoside Rb3 on myocardial injury and heart function impairment induced by isoproterenol in rats. Eur J Pharmacol 636:121–125

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Yu XF, Qu SC, Xu HL, Sui DY (2010b) Ginsenoside Rb3 inhibits angiotensin II-induced vascular smooth muscle cells proliferation. Basic Clin Pharmacol Toxicol 107:685–689

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Dong J, Liu P, Lau CW, Gao Z, Zhou D, Tang J, Ng CF, Huang Y (2014a) Ginsenoside Rb3 attenuates oxidative stress and preserves endothelial function in renal arteries from hypertensive rats. Br J Pharmacol 171:3171–3181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Liu Y, Zhang XY, Xu LH, Ouyang DY, Liu KP, Pan H, He J, He XH (2014b) Ginsenoside Rg1 regulates innate immune responses in macrophages through differentially modulating the NF-kappaB and PI3K/Akt/mTOR pathways. Int Immunopharmacol 23:77–84

    Article  PubMed  CAS  Google Scholar 

  • Wei N, Zhang C, He H, Wang T, Liu Z, Liu G, Sun Z, Zhou Z, Bai C, Yuan D (2014) Protective effect of saponins extract from Panax japonicus on myocardial infarction: involvement of NF-kappaB, Sirt1 and mitogen-activated protein kinase signalling pathways and inhibition of inflammation. J Pharm Pharmacol 66:1641–1651

    Article  CAS  PubMed  Google Scholar 

  • Wu CF, Bi XL, Yang JY, Zhan JY, Dong YX, Wang JH, Wang JM, Zhang R, Li X (2007) Differential effects of ginsenosides on NO and TNF-alpha production by LPS-activated N9 microglia. Int Immunopharmacol 7:313–320

    Article  CAS  PubMed  Google Scholar 

  • Xie CL, Li JH, Wang WW, Zheng GQ, Wang LX (2015) Neuroprotective effect of ginsenoside-Rg1 on cerebral ischemia/reperfusion injury in rats by downregulating protease-activated receptor-1 expression. Life Sci 121:145–151

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Lin L, Tang L, Zheng M, Ma Y, Huang L, Meng W, Wang W (2014) Notoginsenoside R1 attenuates hypoxia and hypercapnia-induced vasoconstriction in isolated rat pulmonary arterial rings by reducing the expression of ERK. Am J Chin Med 42:799–816

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Li X, Zhang L, Liu L, Jing G, Cai H (2015) Ginsenoside Rg1 suppressed inflammation and neuron apoptosis by activating PPARgamma/HO-1 in hippocampus in rat model of cerebral ischemia-reperfusion injury. Int J Clin Exp Pathol 8:2484–2494

    PubMed  PubMed Central  Google Scholar 

  • Ye R, Kong X, Yang Q, Zhang Y, Han J, Zhao G (2011a) Ginsenoside Rd attenuates redox imbalance and improves stroke outcome after focal cerebral ischemia in aged mice. Neuropharmacology 61:815–824

    Article  CAS  PubMed  Google Scholar 

  • Ye R, Yang Q, Kong X, Han J, Zhang X, Zhang Y, Li P, Liu J, Shi M, Xiong L et al (2011b) Ginsenoside Rd attenuates early oxidative damage and sequential inflammatory response after transient focal ischemia in rats. Neurochem Int 58:391–398

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Jeong Y, Song J, Ji GE (2011) Oral administration of ginsenoside Rh1 inhibits the development of atopic dermatitis-like skin lesions induced by oxazolone in hairless mice. Int Immunopharmacol 11:511–518

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Chai H, Lin PH, Lumsden AB, Yao Q, Chen C (2005) Ginsenoside Rb1 blocks homocysteine-induced endothelial dysfunction in porcine coronary arteries. J Vasc Surg 41:861–868

    Article  PubMed  Google Scholar 

  • Zhu J, Jiang Y, Wu L, Lu T, Xu G, Liu X (2012) Suppression of local inflammation contributes to the neuroprotective effect of ginsenoside Rb1 in rats with cerebral ischemia. Neuroscience 202:342–351

    Article  CAS  PubMed  Google Scholar 

  • Zong Y, Ai QL, Zhong LM, Dai JN, Yang P, He Y, Sun J, Ling EA, Lu D (2012) Ginsenoside Rg1 attenuates lipopolysaccharide-induced inflammatory responses via the phospholipase C-gamma1 signaling pathway in murine BV-2 microglial cells. Curr Med Chem 19:770–779

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thilahgavani Nagappan or Wai San Cheang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nagappan, T., Cheang, W.S. (2021). Ginsenosides in Diets. In: Xiao, J., Sarker, S.D., Asakawa, Y. (eds) Handbook of Dietary Phytochemicals. Springer, Singapore. https://doi.org/10.1007/978-981-15-4148-3_42

Download citation

Publish with us

Policies and ethics