Skip to main content
Log in

Effects of adsorbents on benzo(a)pyrene, sesamol, and sesamolin contents and volatile component profiles in sesame oil

  • Research Note
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Effects of adsorbent treatments used for reduction of benzo(a)pyrene (BaP) levels in volatile profiles and sesamol and sesamolin antioxidant contents in sesame oil were evaluated. Charcoal-based activated carbons with different mesh sizes and celite were used as adsorbents. Treatment with activated carbons led to reductions in BaP contents of sesame oil. A small charcoal-based activated carbon particle size was more effective for removal of BaP. Celite; however, did not show an effect on the BaP content of sesame oil under the experimental conditions. Volatile profiles of sesame oil were not influenced by addition of any adsorbent, and the sesamol and sesamolin contents were reduced by all adsorbents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benner BA, Gordon GE, Wise SA. Mobile sources of atmospheric polycyclic aromatic hydrocarbons: A roadway tunnel study. Environ. Sci. Technol. 23: 1269–1278 (1989)

    Article  CAS  Google Scholar 

  2. Mannino MR, Orecchio S. Polycyclic aromatic hydrocarbons (PAHs) in indoor dust matter of Palermo (Italy) area: Extraction, GC-MS analysis, distribution and sources. Atmos. Environ. 42: 1801–1817 (2008)

    Article  CAS  Google Scholar 

  3. International agency for research on cancer (IARC). IARC monographs on the evaluation of carcinogenic risks to humans. IARC, Lyon, France (2004)

    Google Scholar 

  4. Butler JP, Post GB, Lioy PJ, Waldman JM, Greenberg A. Assessment of carcinogenic risk from personal exposure to benzo(a)pyrene in the total human environmental exposure study (THEES). JAPCA J. Air Waste Ma. 43: 970–977 (1993)

    Article  CAS  Google Scholar 

  5. Phillips DH. Polycyclic aromatic hydrocarbons in the diet. Mutat. Res. 443: 139–147 (1999)

    Article  CAS  Google Scholar 

  6. Teixeira VH, Casal S, Oliveira M. PAHs content in sunflower, soybean and virgin olive oils: Evaluation in commercial samples and during refining process. Food Chem. 104: 106–112 (2007)

    Article  CAS  Google Scholar 

  7. Kazerouni N, Sinha R, Hsu C, Greenberg A, Rothman N. Analysis of 200 food items for benzo [a] pyrene and estimation of its intake in an epidemiologic study. Food Chem. Toxicol. 39: 423–436 (2001)

    Article  CAS  Google Scholar 

  8. Šimko P. Determination of polycyclic aromatic hydrocarbons in smoked meat products and smoke flavouring food additives. J. Chromatogr. B. 770: 3–18 (2002)

    Article  Google Scholar 

  9. Dennis M, Massey R, Cripps G, Venn I, Howarth N, Lee G. Factors affecting the polycyclic aromatic hydrocarbon content of cereals, fats andother food products. Food Addit. Contam. 8: 517–530 (1991)

    Article  CAS  Google Scholar 

  10. Speer K, Steeg E, Horstmann P, Kühn T, Montag A. Determination and distribution of polycyclic aromatic hydrocarbons in native vegetableoils, smoked fish products, mussels and oysters, and bream from the river elbe. J. High Res. Chromatog. 13: 104–111 (1990)

    Article  CAS  Google Scholar 

  11. Larsson B, Eriksson A, Cervenka M. Polycyclic aromatic hydrocarbons in crude and deodorized vegetable oils. J. Am. Oil Chem. Soc. 64: 365–370 (1987)

    Article  CAS  Google Scholar 

  12. Orruno E, Morgan M. Purification and characterisation of the 7S globulin storage protein from sesame (Sesamum Indicum L.). Food Chem. 100: 926–934 (2007)

    Article  CAS  Google Scholar 

  13. Rangkadilok N, Pholphana N, Mahidol C, Wongyai W, Saengsooksree K, Nookabkaew S, Satayavivad J. Variation of sesamin, sesamolin and tocopherols in sesame (Sesamum Indicum L.) seeds and oil products in Thailand. Food Chem. 122: 724–730 (2010)

    Article  CAS  Google Scholar 

  14. Fukuda Y, Nagata M, Osawa T, Namiki M. Chemical aspects of the antioxidative activity of roasted sesame seed oil, and the effect of using the oil for frying. Agr. Biol. Chem. Tokyo 50: 857–862 (1986)

    Article  CAS  Google Scholar 

  15. Kaur IP, Saini A. Sesamol exhibits antimutagenic activity against oxygen species mediated mutagenicity. Mutat. Res. 470: 71–76 (2000)

    Article  CAS  Google Scholar 

  16. Fukuda Y, Nagata M, Osawa T, Namiki M. Contribution of lignan analogues to antioxidative activity of refined unroasted sesame seed oil. J. Am. Oil Chem. Soc. 63: 1027–1031 (1986)

    Article  CAS  Google Scholar 

  17. Seo I, Nam H, Shin H. Influence of polycyclic aromatic hydrocarbons formation in sesame oils with different roasting conditions. Korean J. Food Sci. Technol. 41: 355–361 (2009)

    Google Scholar 

  18. Choi SK, Choe SB, Kang ST. Reduction of benzo(a)Pyrene content in sesame oil by using adsorbents. J. Korean Soc. Food Sci. Nutr. 43: 564–569 (2014)

    Article  CAS  Google Scholar 

  19. Mastral A, García T, Callén M, Murillo R, Navarro M, López J. Sorbent characteristics influence on the adsorption of PAC: I. PAH adsorption with the same number of rings. Fuel Process. Technol. 77: 373–379 (2002)

    Google Scholar 

  20. Liu Z. Control of PAHs from incineration by activated carbon fibers. J. Environ. Eng. 132: 463–469 (2006)

    Article  CAS  Google Scholar 

  21. Chiang B, Wey M, Yang W. Control of Incinerator organics by fluidized bed activated carbon adsorber. J. Environ. Eng. 126: 985–992 (2000)

    Article  CAS  Google Scholar 

  22. Souchon I, Rojas J, Voilley A, Grevillot G. Trapping of aromatic compounds by adsorption on hydrophobic sorbents. Sep. Sci. Technol. 31: 2473–2491 (1996)

    Article  CAS  Google Scholar 

  23. Villacañas F, Pereira MFR, Órfão JJ, Figueiredo JL. Adsorption of simple aromatic compounds on activated carbons. J. Colloid Interf. Sci. 293: 128–136 (2006)

    Article  Google Scholar 

  24. Erdem E, Çölgeçen G, Donat R. The removal of textile dyes by diatomite earth. J. Colloid Interf. Sci. 282: 314–319 (2005)

    Article  CAS  Google Scholar 

  25. Karanfil T, Kilduff JE. Role of granular Activated carbon surface chemistry on the adsorption of organic compounds. 1. Priority pollutants. Environ. Sci. Technol. 33: 3217–3224 (1999)

    Article  CAS  Google Scholar 

  26. Al-Ghouti M, Khraisheh M, Allen S, Ahmad M. The removal of dyes from textile wastewater: A study of the physical characteristics and adsorption mechanisms of diatomaceous earth. J. Environ. Manage. 69: 229–238 (2003)

    Article  CAS  Google Scholar 

  27. Ahn CK, Kim YM, Woo SH, Park JM. Selective adsorption of phenanthrene dissolved in surfactant solution using activated carbon. Chemosphere 69: 1681–1688 (2007)

    Article  CAS  Google Scholar 

  28. Newcombe G, Drikas M, Assemi S, Beckett R. Influence of characterised natural organic material on activated carbon adsorption: I. Characterisation of concentrated reservoir water. Water Res. 31: 965–972 (1997)

    CAS  Google Scholar 

  29. Lin C, Cheng Y, Liu Z, Chen J. Metal catalysts supported on activated carbon fibers for removal of polycyclic aromatic hydrocarbons from Incineration flue gas. J. Hazard. Mater. 197: 254–263 (2011)

    Article  CAS  Google Scholar 

  30. Shimoda M, Shiratsuchi H, Nakada Y, Wu Y, Osajima Y. Identification and sensory characterization of volatile flavor compounds in sesame seed oil. J. Agr. Food Chem. 44: 3909–3912 (1996)

    Article  CAS  Google Scholar 

  31. Kim EY. Trial reduce PAHs contents in the process of sesame oil. MS thesis, Kyungpook National University, Daegu, Korea (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Suk Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, B.R., Yang, SO., Song, HW. et al. Effects of adsorbents on benzo(a)pyrene, sesamol, and sesamolin contents and volatile component profiles in sesame oil. Food Sci Biotechnol 24, 2017–2022 (2015). https://doi.org/10.1007/s10068-015-0266-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0266-x

Keywords

Navigation