Skip to main content
Log in

Heat adaptation improves viability of Lactococcus lactis subsp. lactis HE-1 after heat stress

  • Research Note
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

We have studied the potential of environmental adaptation as a survival mechanism to enable lactic acid bacteria to withstand spray drying. The formulation process of these bacteria exposes them to stresses such as heating and dehydration on daily basis. In the present study, the effect of heat adaptation on subsequent exposure of Lactobacillus lactis subsp. lactis HE-1 cells to various types of lethal stress was examined by comparing the viability of heat-adapted cells with nonadapted ones. The responses of heat-adapted cells to other environmental stresses such as H2O2, heat, acid, and ethanol were also examined. The results showed that heat-adapted cells had a higher survival rate than the non-adapted cells. Morphological analysis was performed to explain the observed differences. The adaptation mechanisms in response to stresses in L. lactis subsp. lactis HE-1 are to be fundamental for survival during spray drying process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Porubcan RS, Sellars RL. Lactic starter concentrates. pp. 59–92. In: Microbial Technology. Peppler HJ, Perlman D (eds). Academic Press, Waltham, MA, USA (1979)

    Google Scholar 

  2. Sandine WE. Commercial production of dairy starter cultures. pp. 191–206. In: Dairy Starter Cultures. Cogan TM, Accolas JP (eds). John Wiley & Sons, Inc., Hoboken, NJ, USA (1996)

    Google Scholar 

  3. Van de Guchte M, Serror P, Chervaux C, Smokvins T, Ehrlich SD, Maguin E. Stress response in lactic acid bacteria. Anton. Leeuw. J. Microb. 82: 187–216 (2002)

    Article  Google Scholar 

  4. De Angelis M, Gobbetti M. Environmental stress responses in Lactobacillus: A review. Proteomics 4: 106–122 (2004)

    Article  Google Scholar 

  5. Stanton C, Desmond C, Coakley M, Collins JK, Fitzgerald G, Ross RP. Challenges facing development of probiotic-containing functional foods. pp. 27–58. In: Probiotics and Health. Farnworth E (ed). CRC Press, Inc., Boca Raton, FL, USA (2003)

    Google Scholar 

  6. Prasad J, McJarrow P, Gopal P. Heat and osmotic stress responses of probiotic Lactobacillus rhamnosus HN001 (DR20) in relation to viability after drying. Appl. Environ. Microb. 69: 917–925 (2003)

    Article  CAS  Google Scholar 

  7. Hartke A, Bouche S, Gansel X, Boutibonnes P, Auffray Y. Starvation-induced stress resistance in Lactococcus lactis subsp. lactis IL1403. Appl. Environ. Microb. 60: 3474–3478 (1994)

    CAS  Google Scholar 

  8. Jenkins DE, Chaisson SA, Matin A. Starvation-induced cross protection against osmotic challenge in Escherichia coli. J. Bacteriol. 172: 2779–2781 (1990)

    CAS  Google Scholar 

  9. Rallu F, Gruss A, Ehrlich SD, Maguin E. Acid- and multistress-resistant mutants of Lactococcus lactis: Identification of intracellular stress signals. Mol. Microbiol. 35: 517–528 (2000)

    Article  CAS  Google Scholar 

  10. Schieifer KH, Kraus J, Dvorak C, Kilpper-Balz R, Collins MD, Fischer W. Transfer of Streptococcus lactis and related Streptococci to the genus Lactococcus gen. nov. Syst. Appl. Environ. Microb. 6: 183–195 (1985)

    Google Scholar 

  11. Whitaker RD, Batt CA. Characterization of the heat shock response in Lactococcus lactis subsp. lactis. Appl. Environ. Microb. 57: 1408–1412 (1991)

    CAS  Google Scholar 

  12. van Asseldonk M, Simons A, Vissier H, de Vos WM, Simons G. Cloning, nucleotide sequence, and regulatory analysis of the Lactococcus lactis dnaJ gene. J. Bacteriol. 175: 1637–1644 (1993)

    Google Scholar 

  13. Eaton T, Shearman C, Gasson M. Cloning and sequence analysis of the dnaK region of L. lactis subsp, lactis. J. Gen. Microbiol. 139: 3253–3264 (1993)

    Article  CAS  Google Scholar 

  14. Kim SG, Batt CA. Cloning and sequencing of the Lactococcus lactis subsp, lactis groESL operon. Gene 127: 121–126 (1993)

    Article  CAS  Google Scholar 

  15. Arnau J, Sorensen KI, Appel KF, Vogensen FK, Hammer K. Analysis of heat shock gene expression in Lactococcus lactis MG1363. Microbiology 142: 1685–1691 (1996)

    Article  CAS  Google Scholar 

  16. Duwat E, Ehrlich SD, Gruss A. The recA gene of Lactococcus lactis: Characterization and involvement in oxidative and thermal stress. Mol. Microbiol. 17: 1121–1131 (1995)

    Article  CAS  Google Scholar 

  17. Boutibonnes E, Gillot B, Auffray Y, Thammavongs B. Heat shock induces thermotolerance and inhibition of lysis in a lysogenic strain of Lactococcus lactis. Int. J. Food Microbiol. 14: 1–9 (1991)

    Article  CAS  Google Scholar 

  18. Jeroni D, Brashears MM. Production of H2O2 by Lactobacillus delbruckii subsp. lactis influenced by media used for propagation of cells. J. Food Sci. 65: 1033–1036 (2000)

    Article  Google Scholar 

  19. Achanta G, Huang P. Role of p53 in sensing oxidative DNA damage in response to reactive oxygen species-generating agents. Cancer Res. 64: 6233–6239 (2004)

    Article  CAS  Google Scholar 

  20. Lee NK, Kim HW, Chang HI, Yun CW, Kim SW, Kang CW, Paik HD. Probiotic properties of Lactobacillus plantarum NK181 isolated from jeotgal, a Korean fermented food. Food Sci. Biotechnol. 15: 227–231 (2006)

    CAS  Google Scholar 

  21. Christiansen P, Nielsen EW, Vogensen FK, Brogren CH, Ardo Y. Heat resistance of Lactobacillus paracasei isolated from semi-hard cheese made of pasteurised milk. Int. Dairy J. 16: 1196–1204 (2006)

    Article  CAS  Google Scholar 

  22. Lin J, Matthew P, Smith K, Chapin C, Baik HS, George NB, Foster JW. Mechanisms of acid resistance in enterohemorrhagic Escherichia coli. Appl. Environ. Microb. 62: 3094–3100 (1996)

    CAS  Google Scholar 

  23. Rallu F, Gruss A, Maguin E. Lactococcus lactis and stress. Anton. Leeuw. J. Microb. 70: 243–251 (1996)

    Article  CAS  Google Scholar 

  24. Hartke A, Bouche S, Giard JC, Benachour A, Boutibonnes P, Auffray Y. The lactic acid stress response of Lactococcus lactis subsp. lactis. Curr. Microbiol. 33: 194–199 (1996)

    Article  CAS  Google Scholar 

  25. Kim WS, Ren J, Dunn NW. Differentiation of Lactococcus lactis subspecies lactis and subspecies cremoris strains by their adaptive response to stresses. FEMS Microbiol. Lett. 171: 57–65 (1999)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Seong So.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, CH., Jeon, H., Shin, Y. et al. Heat adaptation improves viability of Lactococcus lactis subsp. lactis HE-1 after heat stress. Food Sci Biotechnol 24, 1823–1827 (2015). https://doi.org/10.1007/s10068-015-0238-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0238-1

Keywords

Navigation