Skip to main content
Log in

Hypnotic effect of GABA from rice germ and/or tryptophan in a mouse model of pentothal-induced sleep

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

γ-Aminobutyric acid (GABA), a primary inhibitory neurotransmitter, and tryptophan (Trp), a substrate for melatonin, are found in functional foods and exert hypnotic effects. The hypnotic effects of 3 doses of GABA and a combined-preparation of GABA and Trp (GABA+Trp) were investigated in mice. Hypnotic activity was evaluated using pentothal-induced sleep time testing. Treatments included low, middle, and high doses of GABA and GABA+Trp. Low doses of GABA (low-GABA) and low-GABA+Trp reduced sleep latency and significantly (p<0.05) prolonged the sleep time induced by pentothal, compared with controls, although the melatonin concentration in the serum was not affected. On the other hand, the adenosine A1 receptor (AA1R) immunoreactivity in the suprachiasmatic nucleus of the hypothalamus was significantly (p<0.05) increased after administration of low-GABA and/or low-GABA+Trp, compared to controls. Low doses of GABA and/or Trp cause hypnotic effects that may be related to AA1R activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Watanabe M, Maemura K, Kanbara K, Tamayama T, Hayasaki H. GABA and GABA receptors in the central nervous system and other organs. Int. Rev. Cytol. 213: 1–47 (2002)

    Article  CAS  Google Scholar 

  2. Rodrigo-Angulo ML, Heredero S, Rodriguez-Veiga E, Reinoso-Suarez F. GABAergic and non-GABAergic thalamic, hypothalamic and basal forebrain projections to the ventral oral pontine reticular nucleus: Their implication in REM sleep modulation. Brain Res. 1210: 116–125 (2008)

    Article  CAS  Google Scholar 

  3. Wang Y, Zhan L, Zeng W, Li K, Sun W, Xu ZC, Xu E. Downregulation of hippocampal GABA after hypoxia-induced seizures in neonatal rats. Neurochem. Res. 36: 2409–2416 (2011)

    Article  CAS  Google Scholar 

  4. Bagosi Z, Jaszberenyi M, Telegdy G. The effects of endomorphins on striatal [3H]GABA release induced by electrical stimulation: An in vitro superfusion study in rats. Neurochem. Res. 34: 905–908 (2009)

    Article  CAS  Google Scholar 

  5. Zhang H, Yao HY, Chen F. Accumulation of gamma-aminobutyric acid in rice germ using protease. Biosci. Biotech. Bioch. 70: 1160–1165 (2006)

    Article  CAS  Google Scholar 

  6. Inoue K, Shirai T, Ochiai H, Kasao M, Hayakawa K, Kimura M, Sansawa H. Blood-pressure-lowering effect of a novel fermented milk containing gamma-aminobutyric acid (GABA) in mild hypertensives. Eur. J. Clin. Nutr. 57: 490–495 (2003)

    Article  CAS  Google Scholar 

  7. Abdou AM, Higashiguchi S, Horie K, Kim M, Hatta H, Yokogoshi H. Relaxation and immunity enhancement effects of gammaaminobutyric acid (GABA) administration in humans. Biofactors 26: 201–208 (2006)

    Article  CAS  Google Scholar 

  8. Yoto A, Murao S, Motoki M, Yokoyama Y, Horie N, Takeshima K, Masuda K, Kim M, Yokogoshi H. Oral intake of gamma-aminobutyric acid affects mood and activities of central nervous system during stressed condition induced by mental tasks. Amino Acids 43: 1331–1337 (2012)

    Article  CAS  Google Scholar 

  9. Hartmann E. Effects of L-tryptophan on sleepiness and on sleep. J. Psychiatr. Res. 17: 107–113 (1982)

    Article  Google Scholar 

  10. Silber BY, Schmitt JA. Effects of tryptophan loading on human cognition, mood, and sleep. Neurosci. Biobehav. Rev. 34: 387–407 (2010)

    Article  CAS  Google Scholar 

  11. dos Santos TS, Meneghelli C, Hoeller AA, Paschoalini MA, Arckens L, Lino-de-Oliveira C, Marino-Neto J. Behavioral profile and Fos activation of serotonergic and non-serotonergic raphe neurons after central injections of serotonin in the pigeon (Columba livia). Behav. Brain Res. 220: 173–184 (2011)

    Article  Google Scholar 

  12. Szabo N, Kincses ZT, Toldi J, Vecsei L. Altered tryptophan metabolism in Parkinson’s disease: A possible novel therapeutic approach. J. Neurol. Sci. 310: 256–260 (2011)

    Article  CAS  Google Scholar 

  13. Feria-Velasco A, Mena-Munguia S, Carabez-Torres J, Gomez-Medrano A, Recendiz-Hurtado F, Orozco-Suarez S, Beas-Zarate C. Low tryptophan and protein in the diet during development increase the susceptibility to convulsions in adult rats. Neurochem. Res. 33: 1484–1491 (2008)

    Article  CAS  Google Scholar 

  14. Markus CR, Firk C, Gerhardt C, Kloek J, Smolders GF. Effect of different tryptophan sources on amino acids availability to the brain and mood in healthy volunteers. Psychopharmacology (Berl) 201: 107–114 (2008)

    Article  CAS  Google Scholar 

  15. Steinberg LA, O’Connell NC, Hatch TF, Picciano MF, Birch LL. Tryptophan intake influences infants’ sleep latency. J. Nutr. 122: 1781–1791 (1992)

    CAS  Google Scholar 

  16. Srinivasan V, Pandi-Perumal SR, Trahkt I, Spence DW, Poeggeler B, Hardeland R, Cardinali DP. Melatonin and melatonergic drugs on sleep: possible mechanisms of action. Int. J. Neurosci. 119: 821–846 (2009)

    Article  CAS  Google Scholar 

  17. Doghramji K. The epidemiology and diagnosis of insomnia. Am. J. Manag. Care. 12: S214–S220 (2006)

    Google Scholar 

  18. Roth T, Drake C. Evolution of insomnia: Current status and future direction. Sleep Med. 5(Suppl. 1): S23–S30 (2004)

    Article  Google Scholar 

  19. Fang X, Hao JF, Zhou HY, Zhu LX, Wang JH, Song FQ. Pharmacological studies on the sedative-hypnotic effect of Semen Ziziphi spinosae (Suanzaoren) and Radix et Rhizoma Salviae miltiorrhizae (Danshen) extracts and the synergistic effect of their combinations. Phytomedicine 17: 75–80 (2010)

    Article  CAS  Google Scholar 

  20. Gyllenhaal C, Merritt SL, Peterson SD, Block KI, Gochenour T. Efficacy and safety of herbal stimulants and sedatives in sleep disorders. Sleep Med. Rev. 4: 229–251 (2000)

    Article  Google Scholar 

  21. Darias V, Abdala S, Martin-Herrera D, Tello ML, Vega S. CNS effects of a series of 1,2,4-triazolyl heterocarboxylic derivatives. Pharmazie 53: 477–481 (1998)

    CAS  Google Scholar 

  22. Ma Y, Ma H, Eun JS, Nam SY, Kim YB, Hong JT, Lee MK, Oh KW. Methanol extract of Longanae Arillus augments pentobarbitalinduced sleep behaviors through the modification of GABAergic systems. J. Ethnopharmacol. 122: 245–250 (2009)

    Article  Google Scholar 

  23. Lee CH, Park JH, Yoo KY, Choi JH, Hwang IK, Ryu PD, Kim DH, Kwon YG, Kim YM, Won MH. Pre- and post-treatments with escitalopram protect against experimental ischemic neuronal damage via regulation of BDNF expression and oxidative stress. Exp. Neurol. 229: 450–459 (2011)

    Article  CAS  Google Scholar 

  24. Gottesmann C. GABA mechanisms and sleep. Neuroscience. 111: 231–239 (2002)

    Article  CAS  Google Scholar 

  25. Borja NL, Daniel KL. Ramelteon for the treatment of insomnia. Clin. Ther. 28: 1540–1555 (2006)

    Article  CAS  Google Scholar 

  26. Lu J, Greco MA. Sleep circuitry and the hypnotic mechanism of GABAA drugs. J. Clin. Sleep Med. 2: S19–S26 (2006)

    Google Scholar 

  27. Beulens JW, Bindels JG, de Graaf C, Alles MS, Wouters-Wesseling W. Alpha-lactalbumin combined with a regular diet increases plasma Trp-LNAA ratio. Physiol. Behav. 81: 585–593 (2004)

    Article  CAS  Google Scholar 

  28. Basheer R, Strecker RE, Thakkar MM, McCarley RW. Adenosine and sleep-wake regulation. Prog. Neurobiol. 73: 379–396 (2004)

    Article  CAS  Google Scholar 

  29. Zhang J, Yin D, Wu F, Zhang G, Jiang C, Li Z, Wang L, Wang K. Microinjection of adenosine into the hypothalamic ventrolateral preoptic area enhances wakefulness via the A1 receptor in rats. Neurochem. Res. 38: 1616–1623 (2013)

    Article  CAS  Google Scholar 

  30. Liu ZW, Gao XB. Adenosine inhibits activity of hypocretin/orexin neurons by the A1 receptor in the lateral hypothalamus: A possible sleep-promoting effect. J. Neurophysiol. 97: 837–848 (2007)

    Article  CAS  Google Scholar 

  31. Sodickson DL, Bean BP. Neurotransmitter activation of inwardly rectifying potassium current in dissociated hippocampal CA3 neurons: Interactions among multiple receptors. J. Neurosci. 18: 8153–8162 (1998)

    CAS  Google Scholar 

  32. Dunwiddie TV, Masino SA. The role and regulation of adenosine in the central nervous system. Annu. Rev. Neurosci. 24: 31–55 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il-Jun Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, J.H., Im, C., Park, J.H. et al. Hypnotic effect of GABA from rice germ and/or tryptophan in a mouse model of pentothal-induced sleep. Food Sci Biotechnol 23, 1683–1688 (2014). https://doi.org/10.1007/s10068-014-0229-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-014-0229-7

Keywords

Navigation