Skip to main content
Log in

Trans vaccenic acid (trans-11 18:1), a precursor of cis-9, trans-11-conjugated linoleic acid, exerts a direct anti-carcinogenic function in T47D breast carcinoma cells

  • Research Note
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The role of TVA in suppressing proliferation of various human cancer cell lines was investigated that TVA and c9, t11-CLA both suppressed cell proliferation. The suppressive effect of TVA was clearly observed in T47D breast carcinoma cells after stearoyl-CoA desaturase-1 (SCD) knockdown using small interfering RNA (siRNA), demonstrating TVA directly affects suppression of human breast carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Craig-Schmidt MC. World-wide consumption of trans fatty acids. Atheroscler. 7(Suppl.): 1–4 (2006)

    Article  CAS  Google Scholar 

  2. Awad AB, Herrmann T, Fink CS, Horvath PJ. 18:1 n7 fatty acids inhibit growth and decrease inositol phosphate release in HT-29 cells compared to n9 fatty acids. Cancer Lett. 91: 55–61 (1995)

    Article  CAS  Google Scholar 

  3. Aro A, Männistö S, Salminen I, Ovaskainen ML, Kataja V, Uusitupa M. Inverse association between dietary and serum conjugated linoleic acid and risk of breast cancer in postmenopausal women. Nutr. Cancer 38: 151–157 (2000)

    Article  CAS  Google Scholar 

  4. Rissanen H, Knekt P, Järvinen R, Salminen I, Hakulinen T. Serum fatty acids and breast cancer incidence. Nutr. Cancer 45: 168–175 (2003)

    Article  CAS  Google Scholar 

  5. Shannon J, King IB, Moshofsky R, Lampe JW, Gao DL, Ray RM, Thomas DB. Erythrocyte fatty acids and breast cancer risk: a casecontrol study in Shanghai, China. Am. J. Clin. Nutr. 85: 1090–1097 (2007)

    CAS  Google Scholar 

  6. King IB, Kristal AR, Schaffer S, Thornquist M, Goodman GE. Serum trans-fatty acids are associated with risk of prostate cancer in beta-carotene and retinol efficacy trial. Cancer Epidemiol. Biomarkers Prev. 14: 988–992 (2005)

    Article  CAS  Google Scholar 

  7. Miller A, McGrath E, Stanton C, Devery R. Vaccenic acid (t11-18:1) is converted to c9, t11-CLA in MCF-7 and SW480 cancer cells. Lipids 38: 623–632 (2003)

    Article  CAS  Google Scholar 

  8. Banni S, Angioni E, Murru E, Carta G, Melis MP, Bauman D, Dong Y, Ip C. Vaccenic acid feeding increases tissue levels of conjugated linoleic acid and suppresses development of premalignant lesions in rat mammary gland. Nutr. Cancer 41: 91–97 (2001)

    Article  CAS  Google Scholar 

  9. Corl BA, Barbano DM, Bauman DE, Ip C. Cis-9, trans-11 CLA derived endogenously from trans-11 18:1 reduces cancer risk in rats. J. Nutr. 133: 2893–2900 (2003)

    CAS  Google Scholar 

  10. Ip C, Banni S, Angioni E, Carta G, McGinley J, Thompson HJ, Barbano D, Bauman D. Conjugated linoleic acid-enriched butter fat alters mammary gland morphogenesis and reduces cancer risk in rats. J. Nutr. 129: 2135–2142 (1999)

    CAS  Google Scholar 

  11. Sauer LA, Dauchy RT, Blask DE, Krause JA, Davidson LK, Dauchy EM, Welham KJ, Coupland K. Conjugated linoleic acid isomers and trans fatty acids inhibit fatty acid transport in hepatoma 7288CTC and inguinal fat pads in Buffalo rats. J. Nutr. 134: 1989–1997 (2004)

    CAS  Google Scholar 

  12. Lock AL, Corl BA, Barbano DM, Bauman DE, Ip C. The anticarcinogenic effect of trans-11 18:1 is dependent on its conversion to cis-9, trans-11 CLA by delta9-desaturase in rats. J. Nutr. 134: 2698–2704 (2004)

    CAS  Google Scholar 

  13. Blewett HJ, Gerdung CA, Ruth MR, Proctor SD, Field CJ. Vaccenic acid favourably alters immune function in obese JCR:LA-cp rats. Brit. J. Nutr. 102: 526–536 (2009)

    Article  CAS  Google Scholar 

  14. Brinkley BR, Beall PT, Wible LJ, Mace ML, Turner DS, Cailleau RM. Variations in cell form and cytoskeleton in human breast carcinoma cells in vitro. Cancer Res. 40: 3118–3129 (1980)

    CAS  Google Scholar 

  15. Siciliano MJ, Barker PE, Cailleau R. Mutually exclusive genetic signatures of human breast tumor cell lines with a common chromosomal marker. Cancer Res. 39: 919–922 (1979)

    CAS  Google Scholar 

  16. Park BK, Moon HR, Yu JR, Kook J, Chai JY, Lee SH. Comparative susceptibility of different cell lines for culture of Toxoplasma gondii in vitro. Korean J. Parasitol. 31: 215–222 (1993)

    Article  CAS  Google Scholar 

  17. Chen TR, Drabkowski D, Hay RJ, Macy M, Peterson Jr W. WiDr is a derivative of another colon adenocarcinoma cell line, HT-29. Cancer Genet. Cytogenet. 27: 125–134 (1987)

    Article  CAS  Google Scholar 

  18. Leibovitz A, Stinson JC, McCombs 3rd WB, McCoy CE, Mazur KC, Mabry ND. Classification of human colorectal adenocarcinoma cell lines. Cancer Res. 36: 4562–4569 (1976)

    CAS  Google Scholar 

  19. Chen TR. Re-evaluation of HeLa, HeLa S3, and HEp-2 karyotypes. Cytogenet. Cell Genet. 48: 19–24 (1988)

    Article  CAS  Google Scholar 

  20. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2[-Delta Delta C(T)] Method. Methods 25: 402–408 (2001)

    Article  CAS  Google Scholar 

  21. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteiophage T4. Nature 227: 680–685 (1970)

    Article  CAS  Google Scholar 

  22. Pollard MR, Gunstone FD, James AT, Morris LJ. Desaturation of positional and geometric isomers of monoenoic fatty acids by microsomal preparations from rat liver. Lipids 15: 306–314 (1980)

    Article  CAS  Google Scholar 

  23. De la Torre A, Debiton E, Durand D, Chardigny JM, Berdeaux O, Loreau O, Barthomeuf C, Bauchart D, Gruffat D. Conjugated linoleic acid isomers and their conjugated derivatives inhibit growth of human cancer cell lines. Anticancer Res. 25: 3943–3949 (2004)

    Google Scholar 

  24. Donnelly C, Olsen AM, Lewis LD, Eisenberg BL, Eastman A, Kinlaw WB. Conjugated linoleic acid (CLA) inhibits expression of the Spot 14 (THRSP) and fatty acid synthase genes and impairs the growth of human breast cancer and liposarcoma cells. Nutr. Cancer 61: 114–22 (2009)

    Article  CAS  Google Scholar 

  25. Tanmahasamut P, Liu J, Hendry LB, Sidell N. Conjugated linoleic acid blocks estrogen signaling in human breast cancer cells. J. Nutr. 134: 674–680 (2004)

    CAS  Google Scholar 

  26. Ochoa JJ, Farquharson AJ, Grant I, Moffat LE, Heys SD, Wahle KW. Conjugated linoleic acids (CLAs) decrease prostate cancer cells proliferation: Different molecular mechanisms for cis-9, trans-11, and trans-10, cis-12 isomers. Carcinogenesis 25: 1185–1191 (2004).

    Article  CAS  Google Scholar 

  27. Palombo JD, Ganguly A, Bistrian BR, Menard MP. The antiproliferative effects of biologically active isomers of conjugated linoleic acid on human colorectal and prostatic cancer cells. Cancer Lett. 28: 163–172 (2002)

    Article  Google Scholar 

  28. Shultz TD, Chew BP, Seaman WR, Luedecke LO. Inhibitory effect of conjugated dienoic derivatives of linoleic acid and beta-carotene on the in vitro growth of human cancer cells. Cancer Lett. 63: 125–133 (1992)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Gu Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, JJ., Lee, JS., Lim, JN. et al. Trans vaccenic acid (trans-11 18:1), a precursor of cis-9, trans-11-conjugated linoleic acid, exerts a direct anti-carcinogenic function in T47D breast carcinoma cells. Food Sci Biotechnol 23, 641–646 (2014). https://doi.org/10.1007/s10068-014-0087-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-014-0087-3

Keywords

Navigation