Skip to main content

Advertisement

Log in

Decreased natural killer T-like cells correlated to disease activity in systemic lupus erythematosus

  • ORIGINAL ARTICLE
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Objectives

To evaluate the absolute numbers and frequencies of natural killer T-like (NKT-like) cells in systemic lupus erythematosus (SLE) and to characterize the possible role of the cells.

Methods

Seventy-nine patients with SLE together with 30 age- and sex-matched healthy controls were enrolled. Flow cytometric determination of peripheral NKT-like cells was carried out for all participants by detecting the absolute counts (Abs) and percentage (%) of CD3 + CD16 + CD56 + cells. Disease activity index, laboratory parameters, and clinical manifestations were collected. The correlation between the cells and these parameters was analyzed.

Results

SLE patients had, with respect to controls, considerably decreased values of NKT-like cells (P < 0.001 in both absolute number and percentage). The absolute number of NKT-like cells was found to have positive correlations with WBC, RBC, PLT, C3, C4, IgM and negative correlations with the disease duration, SLEDAI-2 K, anti-dsDNA, anti-nucleosome, anti-ribosomal protein, CRP, ESR. Meanwhile, it was found that the percentage values of NKT-like cells decreased in SLE patients with nephritis which was correlated with anti-ribosomal protein and CRP in comparison to SLE patients without nephritis. Moreover, an increase in the NKT-like cell counts was also observed in the patients with a clinical response to the treatment.

Conclusions

The absolute counts and frequencies of NKT-like cells decreased in SLE patients significantly, which correlated to disease activities and could recover to normal after the treatment. The NKT-like cells may play an important role in the pathogenesis of SLE and could be a useful marker in the disease assessment.

Key Points

• The absolute counts and frequencies of NKT-like cells decreased in SLE patients significantly.

• NKT-like cells were related to the disease activities and could restore after the treatment.

• NKT-like cells may be a useful marker in the disease assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data and materials in this article are available from the corresponding author on reasonable request.

References

  1. Kaul A, Gordon C, Crow MK, Touma Z, Urowitz MB, van Vollenhoven R, Ruiz-Irastorza G, Hughes G (2016) Systemic lupus erythematosus. Nat Rev Dis Primers 2:16039

    Article  PubMed  Google Scholar 

  2. Renaudineau Y, Pers JO, Bendaoud B, Jamin C, Youinou P (2004) Dysfunctional B cells in systemic lupus erythematosus. Autoimmun Rev 3:516–523

    Article  CAS  PubMed  Google Scholar 

  3. de Leeuw K, Freire B, Smit AJ, Bootsma H, Kallenberg CG, Bijl M (2006) Traditional and non-traditional risk factors contribute to the development of accelerated atherosclerosis in patients with systemic lupus erythematosus. Lupus 15:675–682

    Article  PubMed  Google Scholar 

  4. Horak P, Scudla V, Hermanovo Z, Pospisil Z, Faltynek L, Budikova M, Kusa L (2001) Clinical utility of selected disease activity markers in patients with systemic lupus erythematosus. Clin Rheumatol 20:337–344

    Article  CAS  PubMed  Google Scholar 

  5. La Cava A, Fang CJ, Singh RP, Ebling F, Hahn BH (2005) Manipulation of immune regulation in systemic lupus erythematosus. Autoimmun Rev 4:515–519

    Article  PubMed  Google Scholar 

  6. Torina A, Guggino G, La Manna MP, Sireci G (2018) The Janus face of NKT cell function in autoimmunity and infectious diseases. Int J Mol Sci 19:440

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zarobkiewicz MK, Morawska I, Michalski A, Rolinski J, Bojarska-Junak A (2021) NKT and NKT-like cells in autoimmune neuroinflammatory diseases-multiple sclerosis, Myasthenia Gravis and Guillain-Barre syndrome. Int J Mol Sci 22:9520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Makino Y, Kanno R, Ito T, Higashino K, Taniguchi M (1995) Predominant expression of invariant V alpha 14+ TCR alpha chain in NK1.1+ T cell populations. Int Immunol. 7:1157–1161

    Article  CAS  PubMed  Google Scholar 

  9. Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Van Kaer L (2004) NKT cells: what’s in a name? Nat Rev Immunol 4:231–237

    Article  CAS  PubMed  Google Scholar 

  10. Lu PH, Negrin RS (1994) A novel population of expanded human CD3+CD56+ cells derived from T cells with potent in vivo antitumor activity in mice with severe combined immunodeficiency. J Immunol 153:1687–1696

    Article  CAS  PubMed  Google Scholar 

  11. Tellier J, Nutt SL (2013) The unique features of follicular T cell subsets. Cell Mol Life Sci 70:4771–4784

    Article  CAS  PubMed  Google Scholar 

  12. Ghazarian L, Simoni Y, Magalhaes I, Lehuen A (2014) Invariant NKT cell development: focus on NOD mice. Curr Opin Immunol 27:83–88

    Article  CAS  PubMed  Google Scholar 

  13. Hodge G, Hodge S (2016) Steroid resistant CD8(+)CD28(null) NKT-Like pro-inflammatory cytotoxic cells in chronic obstructive pulmonary disease. Front Immunol 7:617

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zdrazilova-Dubska L, Valik D, Budinska E, Frgala T, Bacikova L, Demlova R (2012) NKT-like cells are expanded in solid tumour patients. Klin Onkol. 25(Suppl 2):2S21-2S25

    PubMed  Google Scholar 

  15. Golden-Mason L, Castelblanco N, O’Farrelly C, Rosen HR (2007) Phenotypic and functional changes of cytotoxic CD56pos natural T cells determine outcome of acute hepatitis C virus infection. J Virol 81:9292–9298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kokordelis P, Kramer B, Boesecke C, Voigt E, Ingiliz P, Glassner A, Wolter F, Srassburg CP, Spengler U, Rockstroh JK, Nattermann J (2015) CD3(+)CD56(+) Natural killer-like T cells display anti-HCV activity but are functionally impaired in HIV(+) patients with acute hepatitis C. J Acquir Immune Defic Syndr 70:338–346

    Article  CAS  PubMed  Google Scholar 

  17. Yu HG, Lee DS, Seo JM, Ahn JK, Yu YS, Lee WJ, Chung H (2004) The number of CD8+ T cells and NKT cells increases in the aqueous humor of patients with Behcet’s uveitis. Clin Exp Immunol 137:437–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. van der Vliet HJ, von Blomberg BM, Nishi N, Reijm M, Voskuyl AE, van Bodegraven AA, Polman CH, Rustemeyer T, Lips P, van den Eertwegh AJ, Giaccone G, Scheper RJ, Pinedo HM (2001) Circulating V(alpha24+) Vbeta11+ NKT cell numbers are decreased in a wide variety of diseases that are characterized by autoreactive tissue damage. Clin Immunol 100:144–148

    Article  PubMed  Google Scholar 

  19. Riccieri V, Parisi G, Spadaro A, Scrivo R, Barone F, Moretti T, Bernardini G, Strom R, Taccari E, Valesini G (2005) Reduced circulating natural killer T cells and gamma/delta T cells in patients with systemic sclerosis. J Rheumatol 32:283–286

    CAS  PubMed  Google Scholar 

  20. Tobin AM, Lynch L, Kirby B, O’Farrelly C (2011) Natural killer cells in psoriasis. J Innate Immun 3:403–410

    Article  CAS  PubMed  Google Scholar 

  21. Lee SJ, Cho YN, Kim TJ, Park SC, Park DJ, Jin HM, Lee SS, Kee SJ, Kim N, Yoo DH, Park YW (2012) Natural killer T cell deficiency in active adult-onset still’s disease: correlation of deficiency of natural killer T cells with dysfunction of natural killer cells. Arthritis Rheum 64:2868–2877

    Article  CAS  PubMed  Google Scholar 

  22. Gutowska-Owsiak D, Birchall MA, Moots RJ, Christmas SE, Pazmany L (2014) Proliferatory defect of invariant population and accumulation of non-invariant CD1d-restricted natural killer T cells in the joints of RA patients. Mod Rheumatol 24:434–442

    Article  CAS  PubMed  Google Scholar 

  23. Lin SJ, Chen JY, Kuo ML, Hsiao HS, Lee PT, Huang JL (2016) Effect of Interleukin-15 on CD11b, CD54, and CD62L Expression on natural killer cell and natural killer T-like cells in systemic lupus erythematosus. Mediators Inflamm 2016:9675861

    Article  PubMed  PubMed Central  Google Scholar 

  24. Green MR, Kennell AS, Larche MJ, Seifert MH, Isenberg DA, Salaman MR (2007) Natural killer T cells in families of patients with systemic lupus erythematosus: their possible role in regulation of IGG production. Arthritis Rheum 56:303–310

    Article  PubMed  Google Scholar 

  25. Petri M, Orbai AM, Alarcon GS, Gordon C, Merrill JT, Fortin PR, Bruce IN, Isenberg D, Wallace DJ, Nived O, Sturfelt G, Ramsey-Goldman R, Bae SC, Hanly JG, Sanchez-Guerrero J, Clarke A, Aranow C, Manzi S, Urowitz M, Gladman D, Kalunian K, Costner M, Werth VP, Zoma A, Bernatsky S, Ruiz-Irastorza G, Khamashta MA, Jacobsen S, Buyon JP, Maddison P, Dooley MA, van Vollenhoven RF, Ginzler E, Stoll T, Peschken C, Jorizzo JL, Callen JP, Lim SS, Fessler BJ, Inanc M, Kamen DL, Rahman A, Steinsson K, Franks AG Jr, Sigler L, Hameed S, Fang H, Pham N, Brey R, Weisman MH, McGwin G Jr, Magder LS (2012) Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum 64:2677–2686

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gladman DD, Ibanez D, Urowitz MB (2002) Systemic lupus erythematosus disease activity index 2000. J Rheumatol 29:288–291

    PubMed  Google Scholar 

  27. Gordon C, Amissah-Arthur M-B, Gayed M, Brown S, Bruce IN, D’Cruz D, Empson B, Griffiths B, Jayne D, Khamashta M, Lightstone L, Norton P, Norton Y, Schreiber K, Isenberg D (2018) The British Society for Rheumatology guideline for the management of systemic lupus erythematosus in adults. Rheumatology (Oxford) 57:e1–e45

    Article  PubMed  Google Scholar 

  28. Fanouriakis A, Kostopoulou M, Alunno A, Aringer M, Bajema I, Boletis JN, Cervera R, Doria A, Gordon C, Govoni M, Houssiau F, Jayne D, Kouloumas M, Kuhn A, Larsen JL, Lerstrøm K, Moroni G, Mosca M, Schneider M, Smolen JS, Svenungsson E, Tesar V, Tincani A, Troldborg A, van Vollenhoven R, Wenzel J, Bertsias G, Boumpas DT (2019) 2019 update of the EULAR recommendations for the management of systemic lupus erythematosus. Ann Rheum Dis 78(736):745

    Google Scholar 

  29. Peralbo E, Alonso C, Solana R (2007) Invariant NKT and NKT-like lymphocytes: two different T cell subsets that are differentially affected by ageing. Exp Gerontol 42:703–708

    Article  CAS  PubMed  Google Scholar 

  30. Kronenberg M (2005) Toward an understanding of NKT cell biology: progress and paradoxes. Annu Rev Immunol 23:877–900

    Article  CAS  PubMed  Google Scholar 

  31. Wang X, Xia Y (2019) Anti-double stranded DNA antibodies: origin, pathogenicity, and targeted therapies. Front Immunol 10:1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gomez-Puerta JA, Burlingame RW, Cervera R (2006) Anti-chromatin (anti-nucleosome) antibodies. Lupus 15:408–411

    Article  CAS  PubMed  Google Scholar 

  33. Aringer M (2020) Inflammatory markers in systemic lupus erythematosus. J Autoimmun 110:102374

    Article  CAS  PubMed  Google Scholar 

  34. Liu J, Wang Y, Xiong E, Hong R, Lu Q, Ohno H, Wang JY (2019) Role of the IgM Fc Receptor in Immunity and Tolerance. Front Immunol 10:529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rapaka RR, Ricks DM, Alcorn JF, Chen K, Khader SA, Zheng M, Plevy S, Bengten E, Kolls JK (2010) Conserved natural IgM antibodies mediate innate and adaptive immunity against the opportunistic fungus Pneumocystis murina. J Exp Med 207:2907–2919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Panda S, Ding JL (2015) Natural antibodies bridge innate and adaptive immunity. J Immunol 194:13–20

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the Research and Development project of Peking University People’s Hospital (RDC2019-01 to Dr. Yingni Li) and the National Natural Science Foundation of China (82171773 to Dr. Fanlei Hu, 81871281 to Dr. Yuan Jia). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fanlei Hu or Yingni Li.

Ethics declarations

Ethics approval and consent to participate

All procedures performed in studies involving human participants were in accordance with a protocol approved by the ethical committee of Peking University People’s Hospital. All the participants gave written informed consent.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, S., Wang, Y., Ma, X. et al. Decreased natural killer T-like cells correlated to disease activity in systemic lupus erythematosus. Clin Rheumatol 42, 1435–1442 (2023). https://doi.org/10.1007/s10067-022-06494-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-022-06494-4

Keywords

Navigation