Skip to main content

Advertisement

Log in

Interferon-directed therapies for the treatment of systemic lupus erythematosus: a critical update

  • Review Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

The interferon (IFN) pathway, especially type I IFN, plays a critical role in the immunopathogenesis of systemic lupus erythematosus (SLE). We have gained significant insights into this pathway over the past two decades, including a better understanding of the key mediators of inflammation upstream and downstream of type I IFN. This has led to the identification of multiple potential targets for the treatment of SLE, for which a significant unmet need remains due to the failure of many patients to adequately respond to standard-of-care medications. Unfortunately, most new therapies in SLE have disappointed in preclinical or clinical trials to date, including a number that target type I IFN. Nevertheless, several IFN-directed therapies aimed at specific steps within this immunologic pathway have recently shown promise, and additional agents are in the treatment pipeline. In this review, we focus on the results of key therapeutic studies targeting the type I IFN pathway and discuss the future state of IFN-blockade in SLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gladman DD, Urowitz MB, Rahman P, Ibanez D, Tam L-S (2003) Accrual of organ damage over time in patients with systemic lupus erythematosus. J Rheumatol 30(9):1955–1959

    PubMed  Google Scholar 

  2. Bruce IN, O’Keeffe AG, Farewell V, Hanly JG, Manzi S et al (2015) Factors associated with damage accrual in patients with systemic lupus erythematosus: results from the Systemic Lupus International Collaborating Clinics (SLICC) Inception Cohort. Ann Rheum Dis 74(9):1706–1713

    Article  PubMed  CAS  Google Scholar 

  3. Tsokos GC, Lo MS, Costa Reis P, Sullivan KE (2016) New insights into the immunopathogenesis of systemic lupus erythematosus. Nat Rev Rheumatol 12(12):716–730

    Article  PubMed  CAS  Google Scholar 

  4. Herrada AA, Escobedo N, Iruretagoyena M, Valenzuela RA, Burgos PI, Cuitino L, Llanos C (2019) Innate immune cells’ contribution to systemic lupus erythematosus. Front Immunol 10:772

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Ronnblom L, Pascual V (2008) The innate immune system in SLE: type I interferons and dendritic cells. Lupus 17(5):394–399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ, Shark KB, Grande WJ, Hughes KM, Kapur V, Gregersen PK, Behrens TW (2003) Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A 100(5):2610–2615

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Bennett L, Palucka AK, Arce E, Cantrell V, Borvak J, Banchereau J, Pascual V (2003) Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med 197(6):711–723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Relle M, Weinmann-Menke J, Scorletti E, Cavagna L, Schwarting A (2015) Genetics and novel aspects of therapies in systemic lupus erythematosus. Autoimmun Rev 14(11):1005–1018

    Article  PubMed  CAS  Google Scholar 

  9. Crow MK (2014) Type I interferon in the pathogenesis of lupus. J Immunol 192(12):5459–5468

    Article  PubMed  CAS  Google Scholar 

  10. Becker AM, Dao KH, Kwanghoon Han B, Kornu R, Lakhanpal S et al (2013) SLE peripheral blood B cell, T cell and myeloid cell transcriptomes display unique profiles and each subset contributes to the interferon signature. PLoS One 8(6):e67003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Kim J-M, Park S-H, Kim H-Y, Kwok S-K (2015) A plasmacytoid dendritic cells-type I interferon axis is critically implicated in the pathogenesis of systemic lupus erythematosus. Int J Mol Sci 16(6):14158–14170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Lee AJ, Ashkar AA (2018) The dual nature of type I and type II interferons. Front Immunol 9:2061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Chyuan IT, Tzeng HT, Chen JY (2019) Signaling pathways of type 1 and type III interferons and targeted therapies in systemic lupus erythematosus. Cells 8(9):963

    Article  PubMed Central  CAS  Google Scholar 

  14. Mora-Arias T, Amezcua-Guerra LM (2020) Type III interferons (lambda interferons) in rheumatic autoimmune diseases. Arch Immunol Ther Exp 68(1):1

    Article  CAS  Google Scholar 

  15. Amezcua-Guerra LM, Ferrusquia-Toriz D, Castillo-Martinez D, Marquez-Velasco R, Chavez Rueda AK et al (2015) Limited effectiveness for the therapeutic blockade of interferon α in systemic lupus erythematosus: a possible role for type III interferons. Rheumatology (Oxford) 54(2):203–205

    Article  CAS  Google Scholar 

  16. Barnas J, Albrecht J, Anolik J (2020) Interferon lambda promotes human plasma cell differentiation in lupus and healthy donors [abstract]. Arthritis Rheum 72(suppl 10)

  17. Kalunian KC, Merrill JT, Maciuca R, McBride JM, Townsend MJ et al (2016) A phase II study of the efficacy and safety of rontalizumab (rhuMAb interferon-α) in patients with systemic lupus erythematosus (ROSE). Ann Rheum Dis 75(1):196–202

    Article  PubMed  Google Scholar 

  18. Khamashta M, Merrill JT, Werth VP, Furie R, Kalunian K, Illei GG, Drappa J, Wang L, Greth W, CD1067 study investigators (2016) Sifalimumab, an anti-interferon-α monoclonal antibody, in moderate to severe systemic lupus erythematosus: a randomised, double-blind, placebo-controlled study. Ann Rheum Dis 75(11):1909–1916

    Article  PubMed  CAS  Google Scholar 

  19. Tcherepanova I, Curtis M, Sale M, Miesowicz F, Nicolette C (2013) SAT0193 results of a randomized placebo controlled phase ia study of AGS-009, a humanized anti-interferon-α monoclonal antibody in subjects with systemic lupus erythematosus. Ann Rheum Dis 71:536–537

    Article  Google Scholar 

  20. Furie R, Khamashta M, Merrill JT, Werth VP, Kalunian K, Brohawn P, Illei GG, Drappa J, Wang L, Yoo S, for the CD1013 Study Investigators (2017) Anifrolumab, an anti-interferon-α receptor monoclonal antibody, in moderate-to-severe systemic lupus erythematosus. Arthritis Rheum 69(2):376–386

    Article  CAS  Google Scholar 

  21. Furie RA, Morand EF, Bruce IN, Manzi S, Kalunian KC, Vital EM, Lawrence Ford T, Gupta R, Hiepe F, Santiago M, Brohawn PZ, Berglind A, Tummala R (2019) Type I interferon inhibitor anifrolumab in active systemic lupus erythematosus (TULIP-1): a randomised, controlled, phase 3 trial. Lancet Rheumatol 1(4):e208–e219

    Article  Google Scholar 

  22. Morand EF, Furie R, Tanaka Y, Bruce IN, Askanase AD, Richez C, Bae SC, Brohawn PZ, Pineda L, Berglind A, Tummala R, TULIP-2 Trial Investigators (2020) Trial of anifrolumab in active systemic lupus erythematosus. N Engl J Med 382(3):211–221

    Article  PubMed  CAS  Google Scholar 

  23. Furie R, Morand EF, Askanase A, Vital E, Kalyani R et al (2020) SAT0174 Flare assessments in patients with active systemic lupus erythematosus treated with anifrolumab in 2 phase 3 trials [abstract]. Ann Rheum Dis 79 Suppl 1:1024

    Google Scholar 

  24. Morand EF, Furie R, Tanaka Y, Kalyani R, Abreu G et al (2020) OP0049 Efficacy of anifrolumab in active systemic lupus erythematosus: patient subgroup analysis of BICLA response in 2 phase 3 trials [abstract]. Ann Rheum Dis 79 Suppl 1:32

    Article  Google Scholar 

  25. Evans S (2007) When and how can endpoints be changed after initiation of a randomized clinical trial? PLoS Clin Trials 2(4):e18

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gamad N, Kakkar AK, Pattanaik S (2020) Efficacy of anifrolumab in systemic lupus erythematosus: a critical analysis of the TULIP trials. Lupus:961203320928425. https://doi.org/10.1177/0961203320928425 Online ahead of print

  27. US Food and Drug Administration. Guidance for industry: systemic lupus erythematosus – developing medical products for treatment by CDER, CBER and CDRH, https://www.fda.gov/media/71150/download (accessed 20 June 2020)

  28. Putman M (2020) Anifrolumab in systemic lupus erythematosus. N Engl J Med 382(17):1665–1666

    Article  PubMed  Google Scholar 

  29. Long term safety of anifrolumab in adult subjects with active systemic lupus erythematosus. Clinicaltrials.gov Identifier: NCT02794285

  30. Safety and efficacy of two doses of anifrolumab compared to placebo in adult subjects with active proliferative lupus nephritis. Clinicaltrials.gov Identifier: NCT02547922

  31. Jordan J, Benson J, Chatham WW, Furie RA, Stohl W, Wei JCC, Marciniak S, Yao Z, Srivastava B, Schreiter J, Cesaroni M, Orillion A, Seridi L, Chevrier M (2020) First-in-human study of JNJ-55920839 in healthy volunteers and patients with systemic lupus erythematosus: a randomised placebo-controlled phase 1 trial. Lancet Rheumatol 2(10):E613–E622

    Article  Google Scholar 

  32. Orillion A, Seridi L, Cesaroni M, Schreiter J, Benson J et al (2020) Biomarker analysis of IFN-I modulation in JNJ-839: first-in-human study for systemic lupus erythematosus [abstract]. Arthritis Rheum 72(suppl 10)

  33. Houssiau FA, Thanou A, Mazur M, Ramiterre E, Mora DAG et al (2020) IFN-α kinoid in systemic lupus erythematosus: results from a phase IIb, randomised, placebo-controlled study. Ann Rheum Dis 79(3):347–355

    Article  PubMed  CAS  Google Scholar 

  34. Furie R, Werth VP, Merola JF, Stevenson L, Reynolds TL, Naik H, Wang W, Christmann R, Gardet A, Pellerin A, Hamann S, Auluck P, Barbey C, Gulati P, Rabah D, Franchimont N (2019) Monoclonal antibody targeting BDCA2 ameliorates skin lesions in systemic lupus erythematosus. J Clin Invest 129(3):1359–1371

    Article  PubMed  PubMed Central  Google Scholar 

  35. Furie R, van Vollenhoven R, Kalunian K, Navarra S, Romero-Díaz J et al (2020) Efficacy and safety results from a phase 2, randomized, double-blind trial of BIIB059, an anti-blood dendritic cell antigen 2 antibody, in SLE [abstract]. Arthritis Rheum 72(suppl 10)

  36. Werth V, Furie R, Romero-Diaz J, Navarra S, Kalunian K et al (2020) OP0193 BIIB059, a humanized monoclonal antibody targeting BDCA2 on plasmacytoid dendritic cells (PDC), shows dose-related efficacy in the phase 2 Lilac study in patients (pts) with active cutaneous lupus erythematosus (CLE) [abstract]. Ann Rheum Dis 79 Suppl 1:120

    Article  Google Scholar 

  37. A study to evaluate VIB7734 in participants with systemic lupus erythematosus (SLE), cutaneous lupus erythematosus (CLE), Sjogren's syndrome, systemic sclerosis, polymyositis, and dermatomyositis. Clinicaltrials.gov Identifier: NCT03817424

  38. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-venetoclax-cll-and-sll (accessed 20 June 2020)

  39. Wang LC, Perper S, Schwartz A, Goess C, O’Connor L et al (2015) Venetoclax (ABT-199), a potent and selective BCL-2 inhibitor, prevents nephritis in lupus prone NZB/W F1 mice by depleting selective lymphocyte populations while sparing platelets [abstract]. Ann Rheum Dis 74 Suppl 2:334

    Google Scholar 

  40. Lu P, Fleischmann R, Curtis C, Ignatenko S, Clarke SH, Desai M, Wong SL, Grebe KM, Black K, Zeng J, Stolzenbach J, Medema JK (2018) Safety and pharmacodynamics of venetoclax (ABT-199) in a randomized single and multiple ascending dose study in women with systemic lupus erythematosus. Lupus 27(2):290–302

    Article  PubMed  CAS  Google Scholar 

  41. A study to evaluate the safety, pharmacokinetics, and pharmacodynamics of JNJ-56022473 in subjects with systemic lupus erythematosus. Clinicaltrials.gov Identifier: NCT 02920424

  42. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11(5):373–384

    Article  PubMed  CAS  Google Scholar 

  43. Wu Y-W, Tang W, Zuo J-P (2015) Toll-like receptors: potential targets for lupus treatment. Acta Pharmacol Sin 36(12):1395–1407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Wallace DJ, Gudsoorkar VS, Weisman MH, Venuturupalli SR (2012) New insights into mechanisms of therapeutic effects of antimalarial agents in SLE. Nat Rev Rheumatol 8(9):522–533

    Article  PubMed  CAS  Google Scholar 

  45. Singh M, Kumar B, Aluri V, Lenert P (2016) Interfering with baffled B cells at the lupus tollway: promises, successes, and failed expectations. J Allergy Clin Immunol 137(5):1325–1333

    Article  PubMed  CAS  Google Scholar 

  46. Barrat FJ, Meeker T, Chan JH, Guiducci C, Coffman RL (2007) Treatment of lupus-prone mice with a dual inhibitor of TLR7 and TLR9 leads to reduction of autoantibody production and amelioration of disease symptoms. Eur J Immunol 37(12):3582–3586

    Article  PubMed  CAS  Google Scholar 

  47. Zhu F, Yu D, Kandimalla E, La Monica N, Agrawal S (2011) “Treatment with IMO-3100, a novel TLR7 and TLR9 dual antagonist, inhibits disease development in lupus prone NZBW/F1 mice,” in Keystone Symposia: Dendritic Cells and the Initiation of Adaptive Immunity (Santa Fe, NM)

  48. Rommler F, Hammel M, Waldhuber A, Muller T, Jurk M et al (2015) Guanine-modified inhibitory oligonucleotides efficiently impair TLR7- and TLR9-mediated immune responses of human immune cells. PLoS One 10(2):e0116703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Zhu F, Jiang W, Dong Y, Kandimalla E, La Monica N, et al (2012) IMO-8400, a novel TLR7, TLR8, and TLR9 antagonist, inhibits disease development in lupus-prone NZBW/F1 mice. J Immunol 188(1 Suppl);119:112

  50. Kandimalla ER, Wang D, Li Y, Yu D, Zhu F, et al (2012) Immune regulatory oligonucleotide (iro) compounds to modulate toll-like receptor based immune response. ed: Google Patents

  51. Qu B, Shen N (2015) miRNAs in the pathogenesis of systemic lupus erythematosus. Int J Mol Sci 16(5):9557–9572

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Honarpisheh M, Kohler P, von Rauchhaupt E, Lech M (2018) The involvement of microRNAs in modulation of innate and adaptive immunity in systemic lupus erythematosus and lupus nephritis. J Immunol Res 2018:4126106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Hong S-M, Liu C, Yin Z, Wu L, Qu B, Shen N (2020) MicroRNAs in systemic lupus erythematosus: a perspective on the path from biological discoveries to clinical practice. Curr Rheumatol Rep 22(6):17

    Article  PubMed  CAS  Google Scholar 

  54. Deguine J, Barton GM (2014) MyD88: a central player in innate immune signaling. F1000Prime Rep 6:97

    Article  PubMed  PubMed Central  Google Scholar 

  55. Capolunghi F, Rosado MM, Cascioli S, Girolami E, Bordasco S, Vivarelli M, Ruggiero B, Cortis E, Insalaco A, Fantò N, Gallo G, Nucera E, Loiarro M, Sette C, de Santis R, Carsetti R, Ruggiero V (2010) Pharmacological inhibition of TLR9 activation blocks autoantibody production in human B cells from SLE patients. Rheumatology (Oxford) 49(12):2281–2289

    Article  CAS  Google Scholar 

  56. Cohen P (2014) The TLR and IL-1 signalling network at a glance. J Cell Sci 127(Pt 11):2383–2390

    PubMed  PubMed Central  CAS  Google Scholar 

  57. Dudhgaonkar S, Ranade S, Nagar J, Subramani S, Prasad DS, Karunanithi P, Srivastava R, Venkatesh K, Selvam S, Krishnamurthy P, Mariappan TT, Saxena A, Fan L, Stetsko DK, Holloway DA, Li X, Zhu J, Yang WP, Ruepp S, Nair S, Santella J, Duncia J, Hynes J, McIntyre KW, Carman JA (2017) Selective IRAK4 inhibition attenuates disease in murine lupus models and demonstrates steroid sparing activity. J Immunol 198(3):1308–1319

    Article  PubMed  CAS  Google Scholar 

  58. Lamagna C, Chan M, Bagos A, Tai E, Young C et al (2020) OP0046 Targeting IRAK1 and 4 signaling with R835, a novel oral small molecule inhibitor: a potential new treatment for systemic lupus erythematosus [abstract]. Ann Rheum Dis 79 Suppl1:30

    Google Scholar 

  59. Aouar B, Kovarova D, Letard S, Font-Haro A, Florentin J, Weber J, Durantel D, Chaperot L, Plumas J, Trejbalova K, Hejnar J, Nunès JA, Olive D, Dubreuil P, Hirsch I, Stranska R (2016) Dual role of the tyrosine kinase Syk in regulation of toll-like receptor signaling in plasmacytoid dendritic cells. PLoS One 11(6):e0156063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Study to evaluate safety and efficacy of filgotinib and lanraplenib in females with moderately-to-severely active cutaneous lupus erythematosus (CLE). Clinicaltrials.gov Identifier: NCT03134222

  61. Safety, tolerability, pharmacokinetics, pharmacodynamics and clinical effect of GSK2646264 in cutaneous lupus erythematosus subjects. Clinicaltrials.gov Identifier: NCT02927457

  62. Efficacy and safety study of R935788 tablets to treat systemic lupus erythematosus. Clinicaltrials.gov Identifier: NCT00752999

  63. Kato Y, Park J, Takamatsu H, Konaka H, Aoki W, Aburaya S, Ueda M, Nishide M, Koyama S, Hayama Y, Kinehara Y, Hirano T, Shima Y, Narazaki M, Kumanogoh A (2018) Apoptosis-derived membrane vesicles drive the cGAS–STING pathway and enhance type I IFN production in systemic lupus erythematosus. Ann Rheum Dis 77(10):1507–1515

    Article  PubMed  CAS  Google Scholar 

  64. An J, Durcan L, Karr RM, Briggs TA, Rice GI, Teal TH, Woodward JJ, Elkon KB (2017) Expression of cyclic GMP-AMP synthase in patients with systemic lupus erythematosus. Arthritis Rheum 69(4):800–807

    Article  CAS  Google Scholar 

  65. A phase 2a of RSLV-132 in subjects with systemic lupus erythematosus (SLE). Clinicaltrials.gov Identifier: NCT02660944

  66. Davis JC Jr, Manzi S, Yarboro C, Rairie J, Mcinnes I, Averthelyi D, Sinicropi D, Hale VG, Balow J, Austin H, Boumpas DT, Klippel JH (1999) Recombinant human Dnase I (rhDNase) in patients with lupus nephritis. Lupus 8(1):68–76

    Article  PubMed  Google Scholar 

  67. Gadina M, Johnson C, Schwartz D, Bonelli M, Hasni S, Kanno Y, Changelian P, Laurence A, O'Shea JJ (2018) Translational and clinical advances in JAK-STAT biology: the present and future of jakinibs. J Leukoc Biol 104(3):499–514

    Article  PubMed  CAS  Google Scholar 

  68. Jamilloux Y, El Jammal T, Vuitton L, Gerfaud-Valentin M, Kerever S et al (2019) JAK inhibitors for the treatment of autoimmune and inflammatory diseases. Autoimmun Rev 18(11):102390

    Article  PubMed  CAS  Google Scholar 

  69. Kahl L, Patel J, Layton M, Binks M, Hicks K, Leon G, Hachulla E, Machado D, Staumont-Sallé D, Dickson M, Condreay L, Schifano L, Zamuner S, van Vollenhoven RF, on behalf of the JAK115919 Study Team (2016) Safety, tolerability, efficacy and pharmacodynamics of the selective JAK1 inhibitor GSK2586184 in patients with systemic lupus erythematosus. Lupus 25(13):1420–1430

    Article  PubMed  CAS  Google Scholar 

  70. van Vollenhoven RF, Layton M, Kahl L, Schifano L, Hachulla E, Machado D, Staumont-Sallé D, Patel J (2015) DRESS syndrome and reversible liver function abnormalities in patients with systemic lupus erythematosus treated with the highly selective JAK-1 inhibitor GSK2586184. Lupus 24(6):648–649

    Article  PubMed  Google Scholar 

  71. An adaptive phase II study to evaluate the efficacy, pharmacodynamics, safety and tolerability of GSK2586184. Clinicaltrials.gov Identifier: NCT01777256

  72. A research study to assess if CC-930 is safe in treating subjects with discoid lupus erythematosus. Clinicaltrials.gov Identifier: NCT01466725

  73. Chan ES, Herlitz LC, Jabbari A (2015) Ruxolitinib attenuates cutaneous lupus development in a mouse lupus model. J Invest Dermatol 135(7):1912–1915

    Article  PubMed  CAS  Google Scholar 

  74. Wenzel J, van Holt N, Maier J, Vonnahme M, Bieber T, Wolf D (2016) JAK1/2 inhibitor ruxolitinib controls a case of chilblain lupus erythematosus. J Invest Dermatol 136(6):1281–1283

    Article  PubMed  CAS  Google Scholar 

  75. Klaeschen AS, Wolf D, Brossart P, Bieber T, Wenzel J (2017) JAK inhibitor ruxolitinib inhibits the expression of cytokines characteristic of cutaneous lupus erythematosus. Exp Dermatol 26(8):728–730

    Article  PubMed  CAS  Google Scholar 

  76. Lu LD, Stump KL, Wallace NH, Dobrzanski P, Serdikoff C, Gingrich DE, Dugan BJ, Angeles TS, Albom MS, Mason JL, Ator MA, Dorsey BD, Ruggeri BA, Seavey MM (2011) Depletion of autoreactive plasma cells and treatment of lupus nephritis in mice using CEP-33779, a novel, orally active, selective inhibitor of JAK2. J Immunol 187(7):3840–3853

    Article  PubMed  CAS  Google Scholar 

  77. Study to evaluate the safety and efficacy of filgotinib and lanraplenib in adults with lupus membranous nephropathy (LMN). Clinicaltrials.gov Identifier: NCT03285711

  78. A study to investigate the safety and efficacy of ABBV-105 and upadacitinib given alone or in combination in participants with moderately to severely active systemic lupus erythematosus. Clinicaltrials.gov Identifier: NCT03978520

  79. Wallace DJ, Furie RA, Tanaka Y, Kalunian KC, Mosca M, Petri MA, Dörner T, Cardiel MH, Bruce IN, Gomez E, Carmack T, DeLozier AM, Janes JM, Linnik MD, de Bono S, Silk ME, Hoffman RW (2018) Baricitinib for systemic lupus erythematosus: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 392(10143):222–231

    Article  PubMed  CAS  Google Scholar 

  80. Dörner T, Tanaka Y, Petri M, Smolen JS, Dow ER et al (2018) Baricitinib-associated changes in type l interferon gene signature during a 24-week phase-2 clinical SLE trial [abstract]. Arthritis Rheum 70(suppl 10)

  81. Dorner T, Tanaka Y, Petri MA, Smolen JS, Wallace D et al (2020) OP0045 Delineation of a proinflammatory cytokine profile targeted by JAK1/2 inhibition using baricitinib in a phase 2 SLE trial [abstract]. Ann Rheum Dis 79 Suppl 1:29

    Google Scholar 

  82. A study of baricitinib (LY3009104) in participants with systemic lupus erythematosus (BRAVE I). ClinicalTrials.gov Identifier: NCT03616912

  83. A study of baricitinib in participants with systemic lupus erythematosus (BRAVE II). ClinicalTrials.gov Identifier: NCT03616964

  84. A study of baricitinib in participants with systemic lupus erythematosus (SLE) (SLE-BRAVE-X). ClinicalTrials.gov Identifier: NCT03843125

  85. Hasni S, Gupta S, Davis MA, Poncio E, Temesgen-Oyelakin Y et al (2019) 183 A phase 1B/2A trial of tofacitinib, an oral janus kinase inhibitor, in systemic lupus erythematosus. Lupus Sci Med 6. https://doi.org/10.1136/lupus-2019-lsm.183

  86. Oral tofacitinib in adult subjects with discoid lupus erythematosus (DLE) and systemic lupus erythematosus (SLE). Clinicaltrials.gov Identifier: NCT03159936

  87. Open-label study of tofacitinib for moderate to severe skin involvement in young adults with lupus. Clinicaltrials.gov Identifier: NCT03288324

  88. Sigurdsson S, Nordmark G, Goring HHH, Lindroos K, Wiman A-C et al (2005) Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am J Hum Genet 76(3):528–537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. A dose-ranging study to evaluate efficacy and safety of PF-06700841 in systemic lupus erythematosus (SLE). Clinicaltrials.gov Identifier: NCT03845517

  90. An investigational study to evaluate BMS-986165 in patients with systemic lupus erythematosus. Clinicaltrials.gov Identifier: NCT03252587

  91. Satterthwaite AB (2018) Bruton's tyrosine kinase, a component of B cell signaling pathways, has multiple roles in the pathogenesis of lupus. Front Immunol 8:1986

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. A phase II study of M2951 in systemic lupus erythematosus (SLE). Clinicaltrials.gov Identifier: NCT02975336

  93. Matloubian M, Lo CG, Cinamon G, Lesneski MJ, Xu Y, Brinkmann V, Allende ML, Proia RL, Cyster JG (2004) Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427(6972):355–360

    Article  PubMed  CAS  Google Scholar 

  94. Blaho VA, Hla T (2011) Regulation of mammalian physiology, development, and disease by the sphingosine 1-phosphate and lysophosphatidic acid receptors. Chem Rev 111(10):6299–6320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Sugahara K, Maeda Y, Shimano K, Murase M, Mochiduki S et al (2019) Amiselimod (MT-1303), a novel sphingosine 1-phosphate receptor-1 modulator, potently inhibits the progression of lupus nephritis in two murine SLE models. J Immunol Res 2019:5821589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Exploratory study of MT-1303 in systemic lupus erythematosus patients. ClinicalTrials.gov Identifier: NCT02307643

  97. Strasser D, Gerossier E, Sippel V, Grieder U, Kieninger A et al (2020) SAT0165 preclinical and clinical characterization of cenerimod, a potent, selective, and orally active sphingosine-1-phosphate receptor 1 modulator in SLE [abstract]. Ann Rheum Dis 79 Suppl 1:1019

    Google Scholar 

  98. Efficacy and safety of four doses of cenerimod compared to placebo in adult subjects with active systemic lupus erythematosus. ClinicalTrials.gov Identifier: NCT03742037

  99. Safety and efficacy of KRP203 in subacute cutaneous lupus erythematosus. ClinicalTrials.gov Identifier: NCT01294774

  100. Mahieu MA, Strand V, Simon LS, Lipsky PE, Ramsey-Goldman R (2016) A critical review of clinical trials in systemic lupus erythematosus. Lupus 25(10):1122–1140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Touma Z, Gladman DD (2017) Current and future therapies for SLE: obstacles and recommendations for the development of novel treatments. Lupus Sci Med 4(1):e000239

    Article  PubMed  PubMed Central  Google Scholar 

  102. Falasinnu T, Chaichian Y, Bass MB, Simard JF (2018) The representation of gender and race/ethnic groups in randomized clinical trials of individuals with systemic lupus erythematosus. Curr Rheumatol Rep 20(4):20

    Article  PubMed  PubMed Central  Google Scholar 

  103. Lewis MJ, Jawad AS (2017) The effect of ethnicity and genetic ancestry on the epidemiology, clinical features and outcome of systemic lupus erythematosus. Rheumatology (Oxford) 56(Suppl_1):i67–i77

    CAS  Google Scholar 

  104. Barnado A, Carroll RJ, Casey C, Wheless L, Denny JC, Crofford LJ (2018) Phenome-wide association study identifies marked increased in burden of comorbidities in African Americans with systemic lupus erythematosus. Arthritis Res Ther 20(1):69

    Article  PubMed  PubMed Central  Google Scholar 

  105. Furie RA, Petri MA, Wallace DJ, Ginzler EM, Merrill JT, Stohl W, Chatham WW, Strand V, Weinstein A, Chevrier MR, Zhong ZJ, Freimuth WW (2009) Novel evidence-based systemic lupus erythematosus responder index. Arthritis Rheum 61(9):1143–1151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Franklyn K, Lau CS, Navarra SV, Louthrenoo W, Lateef A, Hamijoyo L, Wahono CS, Chen SL, Jin O, Morton S, Hoi A, Huq M, Nikpour M, Morand EF, Asia-Pacific Lupus Collaboration (2016) Definition and initial validation of a Lupus Low Disease Activity State (LLDAS). Ann Rheum Dis 75(9):1615–1621

    Article  PubMed  CAS  Google Scholar 

  107. Kang J-H, Shin M-H, Choi S-E, Xu H, Park D-J et al (2020) Comparison of three different definitions of low disease activity in patients with systemic lupus erythematosus and their prognostic utilities. Rheumatology (Oxford). https://doi.org/10.1093/rheumatology/keaa407 Online ahead of print

  108. Petri M, Magder LS (2018) Comparison of remission and lupus low disease activity state in damage prevention in a United States systemic lupus erythematosus cohort. Arthritis Rheum 70(11):1790–1795

    Article  Google Scholar 

  109. Golder V, Kandane-Rathnayake R, Yik-Bun Hoi A, Huq M, Louthrenoo W et al (2017) Association of the lupus low disease activity state (LLDAS) with health-related quality of life in a multinational prospective study. Arthritis Res Ther 19(1):62

    Article  PubMed  PubMed Central  Google Scholar 

  110. Morand EF, Trasieva T, Berglind A, Illei GG, Tummala R (2018) Lupus Low Disease Activity State (LLDAS) attainment discriminates responders in a systemic lupus erythematosus trial: post-hoc analysis of the phase IIb MUSE trial of anifrolumab. Ann Rheum Dis 77(5):706–713

    Article  PubMed  CAS  Google Scholar 

  111. Strand V, Simon LS, Meara AS, Touma Z (2020) Measurement properties of selected patient-reported outcome measures for use in randomised controlled trials in patients with systemic lupus erythematosus: a systematic review. Lupus Sci Med 7(1):e000373

    Article  PubMed  PubMed Central  Google Scholar 

  112. Forbess LJ, Bresee C, Wallace DJ, Weisman MH (2017) Failure of a systemic lupus erythematosus response index developed from clinical trial data: lessons examined and learned. Lupus 26(9):909–916

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yashaar Chaichian.

Ethics declarations

Disclosures

YC has received support from AMPEL BioSolutions, Gilead Sciences, the Lupus Research Alliance, Pfizer, Amgen, and Lilly to conduct clinical research, and has served in an advisory board role for GSK. VS has received consulting fees or honoraria from AbbVie, Amgen, Arena, Asana, AstraZeneca, BMS, Boehringer Ingelheim, Celltrion, EMD Serono, Equillium, Galapagos, Genentech/Roche, Gilead, GSK, Ichnos, Janssen, Kypha, Lilly, Merck, MyoKardia, Novartis, Pfizer, Regeneron, Samsung Bioepis, Sandoz, Sanofi, and UCB.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

Type I interferon (IFN) is a key mediator of systemic lupus erythematosus (SLE) pathogenesis.

In recognition of its importance in SLE, multiple therapies targeted to the type I IFN pathway have been or are being studied in randomized controlled trials (RCTs) or are currently in development.

Despite notable failures emblematic of SLE RCTs in general, several promising type I IFN-directed therapies have emerged and provide hope that additional effective management options for patients with SLE will be forthcoming.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaichian, Y., Strand, V. Interferon-directed therapies for the treatment of systemic lupus erythematosus: a critical update. Clin Rheumatol 40, 3027–3037 (2021). https://doi.org/10.1007/s10067-020-05526-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-020-05526-1

Keywords

Navigation