Skip to main content
Log in

Development of a new empirical model and adaptive neuro-fuzzy inference systems in predicting unconfined compressive strength of weathered granite grade III

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

The present paper has developed a new multivariate linear regression and adaptive neuro-fuzzy inference processing to predict UCS for weathered granite grade III based on simple input data from point load index, Schmidt rebound hardness, and P wave velocity. Data from 85 rock core samples of this granite type have been selected. By using multivariate regression analysis, three models with two independent variables and one model with three independent variables have been developed. Furthermore, another model has been obtained by using a neuro-fuzzy logic analysis. The root means square error, RMSE, coefficient of determination, R2, and the mean absolute percentage error, MAPE, were used as the evaluation criteria of the accuracy of the models. The results have indicated that the regression-based and neuro-fuzzy models are effective, but the accuracy of the neuro-fuzzy model is in good agreement with the realistic data from the direct test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • ASTM D2938–95 (2002) Standard test method for unconfined compressive strength of intact rock core specimens (Withdrawn 2005). ASTM International, West Conshohocken, PA, 1995

  • Aufmuth RE (1974) A systematic determination of engineering criteria for rock. Bull Int Assoc Eng Geol 11:235–245

    Google Scholar 

  • Basu A, Kamran M (2010) Point load test on schistose rocks and its applicability in predicting uniaxial compressive strength, 823–828 p

  • Baykasoğlu A, Güllü H, Çanakçı H, Özbakır L (2008) Prediction of compressive and tensile strength of limestone via genetic programming. Expert Syst Appl 35(1):111–123

    Article  Google Scholar 

  • Bieniawski ZT (1989) Engineering rock mass classifications: a complete manual for engineers and geologists in mining, civil, and petroleum engineering. John Wiley & Sons, Hoboken, NJ

    Google Scholar 

  • Bieniawski ZT, Bernede MJ (1979) Suggested methods for determining the uniaxial compressive strength and deformability of rock materials: part 1. Suggested method for determining deformability of rock materials in uniaxial compression. Int J Rock Mech Min Sci Geomech Abstr 16(2):138–140

    Article  Google Scholar 

  • Çelik S (2019) Prediction of uniaxial compressive strength of carbonate rocks from nondestructive tests using multivariate regression and LS-SVM methods. Arab J Geosci 12:193

    Article  Google Scholar 

  • Chang C, Zoback MD, Khaksar A (2006) Empirical relations between rock strength and physical properties in sedimentary rocks. J Pet Sci Eng 51(3):223–237

    Article  Google Scholar 

  • Dearman WR, Baynes FJ, Irfan TY (1978) Engineering grading of weathered granite. Eng Geol 12:345–374

    Article  Google Scholar 

  • Dehghan S, Sattari G, Chehreh Chelgani S, Aliabadi MA (2010) Prediction of uniaxial compressive strength and modulus of elasticity for Travertine samples using regression and artificial neural networks. Min Sci Technol (China) 20(1):41–46

    Article  Google Scholar 

  • Diamantis K, Gartzos E, Migiros G (2009) Study on uniaxial compressive strength, point load strength index, dynamic and physical properties of serpentinites from Central Greece: Test results and empirical relations. Eng Geol 108(3):199–207

    Article  Google Scholar 

  • Ferentinou M, Fakir M (2017) An ANN approach for the prediction of uniaxial compressive strength, of some sedimentary and igneous rocks in eastern KwaZulu-Natal. Procedia Eng 191:1117–1125

    Article  Google Scholar 

  • George D, Mallery P (2010) SPSS for windows step by step: a simple guide and reference 18.0 update (11th ed.). Prentice Hall Press, Upper Saddle River, NJ

  • Gorsuch RL (2013) Factor analysis (2nd ed.). Taylor and Francis, Oxfordshire, UK

  • Gupta AS, Seshagiri Rao K (2000) Weathering effects on the strength and deformational behaviour of crystalline rocks under uniaxial compression state. Eng Geol 56(3):257–274

    Article  Google Scholar 

  • Guttman L (1954) Some necessary conditions for common-factor analysis. Psychometrika 19(2):149–161

    Article  Google Scholar 

  • Hajihassani M, Marto A, Khezri N, Kalatehjari R (2015) Indirect measure of thermal conductivity of rocks through adaptive neuro-fuzzy inference system and multivariate regression analysis. Measurement 67:71–77

    Article  Google Scholar 

  • Heidari M, Khanlari GR, Torabi Kaveh M, Kargarian S (2012) Predicting the uniaxial compressive and tensile strengths of gypsum rock by point load testing. J Rock Mech Rock Eng 45(2):265–273

    Article  Google Scholar 

  • Jahed Armaghani D, Tonnizam Mohamad E, Momeni E, Narayanasamy MS, Mohd Amin M (2015) An adaptive neuro-fuzzy inference system for predicting unconfined compressive strength and Young’s modulus: a study on Main Range granite. Bull Eng Geol Environ 74(4):1301–1319

    Article  Google Scholar 

  • Jalali SH, Heidari M, Zarrinshoja M, Mohseni N (2019) Predicting of uniaxial compressive strength of some igneous and metamorphic rocks by block punch index and cylindrical punch index tests. Int J Rock Mech Min Sci 119:72–80

    Article  Google Scholar 

  • Jang JR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685

    Article  Google Scholar 

  • Jang J-SR, Sun C-T, Mizutani E (1997) Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. Prentice Hall, Upper Saddle River, NJ

  • Kahraman S (2001) Evaluation of simple methods for assessing the uniaxial compressive strength of rock. Int J Rock Mech Min Sci 38(7):981–994

    Article  Google Scholar 

  • Kahraman S (2014) The determination of uniaxial compressive strength from point load strength for pyroclastic rocks. Eng Geol 170:33–42

    Article  Google Scholar 

  • Kahraman S, Gunaydin O (2009) The effect of rock classes on the relation between uniaxial compressive strength and point load index. Bull Eng Geol Environ 68(3):345–353

    Article  Google Scholar 

  • Kaiser HF (1958) The varimax criterion for analytic rotation in factor analysis. Psychometrika 23(3):187–200

    Article  Google Scholar 

  • Kaiser HF (1961) A note on Guttman’s lower bound for the number of common factors. Br J Stat Psychol 14(1):1–2

    Article  Google Scholar 

  • Karaman K, Kesimal A, Ersoy H (2015) A comparative assessment of indirect methods for estimating the uniaxial compressive and tensile strength of rocks. Arab J Geosci 8(4):2393–2403

    Article  Google Scholar 

  • Kartalopoulos SV (1996)  Understanding neural networks and fuzzy logic: basic concepts and applications. John Wiley & Sons, IEEE Neural Networks Council, New York

  • Katz O, Reches Z, Roegiers JC (2000) Evaluation of mechanical rock properties using a Schmidt Hammer. Int J Rock Mech Min Sci 37(4):723–728

    Article  Google Scholar 

  • Kohno M, Maeda H (2012) Relationship between point load strength index and uniaxial compressive strength of hydrothermally altered soft rocks. Int J Rock Mech Min Sci 50:147–157

    Article  Google Scholar 

  • Looney CG (1997) Pattern recognition using neural networks: theory and algorithms for engineers and scientists. Oxford University Press, Oxford, England

  • Lumb P (1962) The properties of decomposed granite. Géotechnique 12(3):226–243

    Article  Google Scholar 

  • Madhubabu N, Singh PK, Kainthola A, Mahanta B, Tripathy A, Singh TN (2016) Prediction of compressive strength and elastic modulus of carbonate rocks. Measurement 88:202–213

    Article  Google Scholar 

  • Minaeian B, Ahangari K (2013) Estimation of uniaxial compressive strength based on P-wave and Schmidt hammer rebound using statistical method. Arab J Geosci 6(6):1925–1931

    Article  Google Scholar 

  • Mishra DA, Basu A (2012) Use of the block punch test to predict the compressive and tensile strengths of rocks. Int J Rock Mech Min Sci 51:119–127

    Article  Google Scholar 

  • Mohammadi M, Tavakoli H (2015) A study of the behaviour of brittle rocks subjected to confined stress based on the Mohr–Coulomb failure criterion. Geomech Geoeng 10(1):57–67

    Article  Google Scholar 

  • Mohammadi K, Shamshirband S, Kamsin A, Yusof RJR (2016) Retracted: application of adaptive neuro-fuzzy technique to determine the most relevant variables for daily soil temperature prediction at different depths. Catena 145:204–213

    Article  Google Scholar 

  • Moradian ZA, Behnia M (2009) Predicting the uniaxial compressive strength and static young’s modulus of intact sedimentary rocks using the ultrasonic test. Int J Geomech 9(1):14–19

    Article  Google Scholar 

  • Moye D (1955) Engineering geology for the Snowy Mountains Scheme. J Inst Eng Aust 27(10):287–298

    Google Scholar 

  • Nelson, MMC, Illingworth WT (1991) A practical guide to neural nets. Addison-Wesley, Boston, MA

  • Ng I-T, Yuen K-V, Lau C-H (2015) Predictive model for uniaxial compressive strength for grade III granitic rocks from Macao. Eng Geol 199:28–37

    Article  Google Scholar 

  • Rezaei M, Davoodi PK, Najmoddin I (2019) Studying the correlation of rock properties with P-wave velocity index in dry and saturated conditions. J Appl Geophys 169:49–57

    Article  Google Scholar 

  • Roghanchi P, Kallu RR (2014) Block punch index (BPI) test—a new consideration on validity and correlations for basalt and rhyolite rock types. J Min Sci 50(3):475–483

    Article  Google Scholar 

  • Romo MP, Garcia SR (2003) Neurofuzzy mapping of CPT values into soil dynamic properties. Soil Dyn Earthq Eng 23(6):473–482

    Article  Google Scholar 

  • Salehin S (2017) Investigation into engineering parameters of marls from Seydoon dam in Iran. J Rock Mech Geotech Eng 9(5):912–923

    Article  Google Scholar 

  • Sarkar K, Tiwary A, Singh TN (2010) Estimation of strength parameters of rock using artificial neural networks. Bull Eng Geol Environ 69(4):599–606

    Article  Google Scholar 

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52(3–4):591–611

    Article  Google Scholar 

  • Sharma PK, Singh TN (2008) A correlation between P-wave velocity, impact strength index, slake durability index and uniaxial compressive strength. Bull Eng Geol Environ 67(1):17–22

    Article  Google Scholar 

  • Singh TN, Kainthola A, Venkatesh A (2012) Correlation between point load index and uniaxial compressive strength for different rock types. J Rock Mech Rock Eng 45(2):259–264

    Article  Google Scholar 

  • Sonmez H, Tunusluoglu C (2008) New considerations on the use of block punch index for predicting the uniaxial compressive strength of rock material. Int J Rock Mech Min Sci 45(6):1007–1014

    Article  Google Scholar 

  • Sonmez H, Gokceoglu C, Nefeslioglu HA, Kayabasi A (2006) Estimation of rock modulus: for intact rocks with an artificial neural network and for rock masses with a new empirical equation. Int J Rock Mech Min Sci 43(2):224–235

    Article  Google Scholar 

  • Swingler K (1996) Applying neural networks: a practical guide.  Academic Press, Cambridge

  • Tsiambaos G, Sabatakakis N (2004) Considerations on strength of intact sedimentary rocks. Eng Geol 72(3):261–273

    Article  Google Scholar 

  • Tuğrul A, Zarif IH (1999) Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Eng Geol 51(4):303–317

    Article  Google Scholar 

  • Ulusay R, Gokceoglu C, Sulukcu S (2001) Draft ISRM suggested method for determining block punch strength index (BPI). Int J Rock Mech Min Sci 38(8):1113–1119

    Article  Google Scholar 

  • Wang L, Wu C, Gu X, Liu H, Mei G, Zhang W (2020) Probabilistic stability analysis of earth dam slope under transient seepage using multivariate adaptive regression splines. Bull Eng Geol Environ 79(6):2763–2775

    Article  Google Scholar 

  • Wengang Z, Liang H, Zixu Z, Yanmei Z (2020) Digitalization of mechanical and physical properties of Singapore Bukit Timah granite rocks based on borehole data from four sites. https://doi.org/10.1016/j.undsp.2020.02.003

  • Yagiz S (2011) P-wave velocity test for assessment of geotechnical properties of some rock materials. Bull Mater Sci 34(4):947

    Article  Google Scholar 

  • Yasar E, Erdogan Y (2004) Correlating sound velocity with the density, compressive strength and Young’s modulus of carbonate rocks. Int J Rock Mech Min Sci 41(5):871–875

    Article  Google Scholar 

  • Yeomans KA, Golder PA (1982) The Guttman-Kaiser criterion as a predictor of the number of common factors. Statistician 31(3):221

    Article  Google Scholar 

  • Yesiloglu-Gultekin N, Gokceoglu C, Sezer EA (2013) Prediction of uniaxial compressive strength of granitic rocks by various nonlinear tools and comparison of their performances. Int J Rock Mech Min Sci 62:113–122

    Article  Google Scholar 

  • Zahmatkesh I, Soleimani B, Kadkhodaie A, Golalzadeh A, Abdollahi A-M (2017) Estimation of DSI log parameters from conventional well log data using a hybrid particle swarm optimization–adaptive neuro-fuzzy inference system. J Pet Sci Eng 157:842–859

    Article  Google Scholar 

  • Zhang W, Zhang Y, Goh ATC (2017) Multivariate adaptive regression splines for inverse analysis of soil and wall properties in braced excavation. Tunn Undergr Space Technol 64:24–33

    Article  Google Scholar 

  • Zhang W, Wu C, Zhong H, Li Y, Wang L (2020a) Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization. Geosci Front 12(1):469–477

  • Zhang W, Zhang R, Wu C, Goh ATC, Lacasse S, Liu Z, Liu H (2020b) State-of-the-art review of soft computing applications in underground excavations. Geosci Front 11(4):1095–1106

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. H. Shahriari for their critical reviews of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Amin Moosavi.

Appendix

Appendix

Table 10 Summary of results

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moosavi, S.A., Mohammadi, M. Development of a new empirical model and adaptive neuro-fuzzy inference systems in predicting unconfined compressive strength of weathered granite grade III. Bull Eng Geol Environ 80, 2399–2413 (2021). https://doi.org/10.1007/s10064-020-02071-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-020-02071-8

Keywords

Navigation