Skip to main content

Advertisement

Log in

Prediction of uniaxial compressive strength of carbonate rocks from nondestructive tests using multivariate regression and LS-SVM methods

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Uniaxial compressive strength (UCS) value of a rock material is one of the most important design parameters in engineering practice and related fields of geosciences. Through this importance, prediction of UCS values of rock materials from nondestructive quicker and simpler tests are widely preferred. The aim of this study is to predict the UCS values of five carbonate rock groups including marble, dolomite, two limestones, and travertine from longitudinal ultrasonic wave velocity (Vp), Schmidt hardness rebound number (SHR), and cubic sample sizes (L). For this aim, a total of 90 cubic samples with 7, 9, and 11 cm edge sizes were prepared. Chemical, petrographical, and basic physical properties of the sample groups were investigated. After Vp and SHR values, UCS values of all samples were determined. By using multivariate regression analyses (MR), different UCS prediction equations from dry unit weight (γd), Vp, SHR, and also L values were proposed. Prediction performances of proposed model in which Vp, SHR, and L are input parameters was also analyzed by least square support vector machines (LS-SVM) method. Prediction performances of the MR and LS-SVM models were analyzed by coefficient of determination (R2), efficiency (E), and root mean square error (RMSE) performance measures. These values were calculated as 0.867, 0.799, and 16.616 respectively for the LS-SVM model and 0.781, 0.749, and 18.561 respectively for the MR model. The LS-SVM method was found to be successful in the prediction of the UCS values from nondestructive test data of carbonate rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aboutaleb S, Bagherpour R, Behina M, Aghababaei M (2017) Combination of the physical and ultrasonic tests in estimating the uniaxial compressive strength and Young’s modulus of intact limestone rocks. Geotech Geol Eng 35:3015–3023

    Article  Google Scholar 

  • Altındağ R (2012) Correlation between P-wave velocity and some mechanical properties for sedimentary rocks. South Afr Inst Min Metall 112:229–237

    Google Scholar 

  • Alvarez Grima M, Babuška R (1999) Fuzzy model for the prediction of unconfined compressive strength of rock samples. Int J Rock Mech Min 36:339–349

    Article  Google Scholar 

  • Anon (1979) Classification of rocks and soils for engineering geological mapping part I: rock and soil materials. Bull Int Assoc Eng Geol 19:364–371

    Article  Google Scholar 

  • ASTM (1999) Standard test method for compressive strength of dimension stone (designation: C 170). Annual book of ASTM standards, Philadelphia

    Google Scholar 

  • Aydin A, Basu A (2005) The Schmidt hammer in rock material characterization. Eng Geol 81(1):1–14

    Article  Google Scholar 

  • Aydoğdu M, Fırat M (2015) Estimation of failure rate in water distribution network using fuzzy clustering and LS-SVM methods. Water Resour Manag 29:1575–1590

    Article  Google Scholar 

  • Azimian A (2017) Application of statistical methods for predicting uniaxial compressive strength of limestone rocks using nondestructive tests. Acta Geotech 12:321–333

    Article  Google Scholar 

  • Baykasoğlu A, Güllü H, Çanakcı H, Özbakır L (2008) Prediction of compressive and tensile strength of limestone via genetic programming. Expert Syst Appl 35:111–123

    Article  Google Scholar 

  • Beiki M, Majdi A, Givshad AD (2013) Application of genetic programming to predict the uniaxial compressive strength and elastic modulus of carbonate rocks. Int J Rock Mech Min 63:159–169

    Article  Google Scholar 

  • Bieniawski ZT (1974) Estimating the strength of rock materials. J S Afr I Min Metall 74(8):312–320

  • Bruno G, Vessia G, Bobbo L (2013) Statistical method for assessing the uniaxial compressive strength of carbonate rock by Schmidt hammer tests performed on core samples. Rock Mech Rock Eng 46:199–206

    Article  Google Scholar 

  • Büyüksağış İS, Göktan RM (2007) The effect of Schmidt hammer type on uniaxial compressive strength prediction of rock. Int J Rock Mech Min 44:299–307

    Article  Google Scholar 

  • Cargill JS, Shakoor A (1990) Evaluation of empirical methods for measuring the uniaxial compressive strength of rock. Int J Rock Mech Min Sci Geomech Abstr 27(6):495–503

    Article  Google Scholar 

  • Çelik SB (2017) The effect of cubic specimen size on uniaxial compressive strength of carbonate rocks from Western Turkey. Arab J Geosci 10:426

    Article  Google Scholar 

  • Ceryan N, Okkan U, Kesimal A (2012) Application of generalized regression neural networks in predicting the unconfined compressive strength of carbonate rocks. Rock Mech Rock Eng 45:1055–1072

    Article  Google Scholar 

  • Ceryan N, Okkan U, Kesimal A (2013a) Prediction of unconfined compressive strength of carbonate rocks using artificial neural networks. Environ Earth Sci 68:807–819

    Article  Google Scholar 

  • Ceryan N, Okkan U, Samui P, Ceryan Ş (2013b) Modeling of tensile strength of rocks materials based on support vector machines approaches. Int J Numer Anal Methods Geomech 37:2655–2670

    Google Scholar 

  • Çobanoğlu İ, Çelik SB (2008) Estimation of uniaxial compressive strength from point load strength, Schmidt hardness and P-wave velocity. Bull Eng Geol Environ 67:491–498

    Article  Google Scholar 

  • De Brabanter K, Karsmakers P, Ojeda F, Alzate C, De Brabanter J, Pelckmans K, De Moor B, Vandewalle J, Suykens JAK (2011) LS-SVMlab toolbox user’s guide version 1.8. K. U. Leuven, ESAT-SISTA TechnicalReport 10—146, Leuven, p 115

  • Deere DU, Miller RP (1966) Engineering classification of intact rock. Technical Report AFWL-TR-65-116. Kirtland Air Force Base, New Mexico 300p

    Google Scholar 

  • Dehghan S, Sattarı GH, Chehreh CS, Aliabadi M (2010) Prediction of unconfined compressive strength and modulus of elasticity for travertine samples using regression and artificial neural networks. Min Sci Technol 20:41–46

    Google Scholar 

  • Demirdağ S, Yavuz H, Altındağ R (2009) The effect of sample size on Schmidt rebound hardness value of rocks. Int J Rock Mech Min 46:725–730

    Article  Google Scholar 

  • Demirdağ S, Şengün N, Uğur İ, Altındağ R (2018) Estimating the uniaxial compressive strength of rocks with Schmidt rebound hardness by considering the sample size. Arab J Geosci 11:502

    Article  Google Scholar 

  • EN 1926 (2006) Natural stone test methods - Determination of uniaxial compressive strength. European Committee for Standardization, Brussels, p 17

  • EN 1936 (2006) Natural stone test methods - Determination of real density and apparent density, and of total and open porosity. European Committee for Standardization, Brussels, p 10

  • Entwisle DC, Hobbs PRN, Jones LD, Gunn D, Raines MG (2005) The relationships between effective porosity, uniaxial compressive strength and sonic velocity of intact Borrowdale Volcanic Group core samples from Sellafield. Geotech Geol Eng 23:793–809

    Article  Google Scholar 

  • Ersoy H, Kanık D (2012) Multicriteria decision-making analysis based methodology for predicting carbonate rocks’ uniaxial compressive strength. Earth Sci Res J 16(1):65–74

    Google Scholar 

  • Fener M, Kahraman S, Bilgil A, Günaydın O (2005) A comparative evaluation of indirect methods to estimate the compressive strength of rocks. Rock Mech Rock Eng 38(4):329–343

    Article  Google Scholar 

  • Gökçeoğlu C (1996) An assessment on the reliability of uniaxial compressive strength data estimated from Schmidt hammer hardness rebounds. Geol Eng 48:78–81 (In Turkish)

    Google Scholar 

  • Gökçeoğlu C (2002) A fuzzy triangular chart to predict the uniaxial compressive strength of the Ankara agglomerates from their petrographic composition. Eng Geol 66:39–51

    Article  Google Scholar 

  • Goyal MK, Bharti B, Quilty J, Adamowski J, Pandey A (2014) Modeling of daily pan evaporation in sub tropical climates using ANN, LS-SVR, fuzzy logic, and ANFIS. Expert Syst Appl 41:5267–5276

    Article  Google Scholar 

  • Gupta V, Sharma R, Sah MP (2009) An evaluation of surface hardness of natural and modified rocks using Schmidt hammer: study from northwestern Himalaya, India. Geogr Ann 91 A(3):179–188

    Article  Google Scholar 

  • Hebib R, Belhai D, Alloul B (2017) Estimation of uniaxial compressive strength of North Algeria sedimentary rocks using density, porosity, and Schmidt hardness. Arab J Geosci 10:383

    Article  Google Scholar 

  • Hucka V (1965) A rapid method of determining the strength of rocks in situ. Int J Rock Mech Min 2:127–134

    Article  Google Scholar 

  • ISRM (2007) The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. In: Ulusay R, Hudson JA (eds) suggested methods prepared by the commission on testing methods. ISRM, Compilation arranged by the ISRM Turkish National Group, Ankara 628p

    Google Scholar 

  • Jun X, Annan J, Zhiwu W, Jingping Q (2013) A nonlinear optimization technique of tunnel construction based on DE and LSSVM. Math Probl Eng 2013(980154):11

    Google Scholar 

  • Kahraman S (2001) Evaluation of simple methods for assessing the uniaxial compressive strength of rock. Int J Rock Mech Min 38:981–994

    Article  Google Scholar 

  • Kahraman S (2007) The correlations between the saturated and dry P-wave velocity of rocks. Ultrasonics 46:341–348

    Article  Google Scholar 

  • Kahraman S, Alber M (2006) Estimating unconfined compressive strength and elastic modulus of a fault breccia mixture of weak blocks and strong matrix. Int J Rock Mech Min 43:1277–1128

    Article  Google Scholar 

  • Karakul H (2017) Investigation of saturation effect on the relationship between compressive strength and Schmidt hammer rebound. Bull Eng Geol Environ 76:1143–1152

    Article  Google Scholar 

  • Karakul H, Ulusay R (2013) Empirical correlations for predicting strength properties of rocks from P-wave velocity under different degrees of saturation. Rock Mech Rock Eng 46:981–999

    Article  Google Scholar 

  • Karakuş M, Kumral M, Kılıç O (2005) Predicting elastic properties of intact rocks from index tests using multiple regression modelling. Int J Rock Mech Min 42:323–330

    Article  Google Scholar 

  • Karaman K, Kesimal A (2015) A comparative study of Schmidt hammer test methods for estimating the uniaxial compressive strength of rocks. B Eng Geol Environ 74:507–520

    Article  Google Scholar 

  • Katz O, Reches Z, Roegiers J-C (2000) Evaluation of mechanical rock properties using a Schmidt hammer. Int J Rock Mech Min 37:723–728

    Article  Google Scholar 

  • Kılıç A, Teymen A (2008) Determination of mechanical properties of rocks using simple methods. B Eng Geol Environ 67:237–244

    Article  Google Scholar 

  • Kurtuluş C, Sertçelik F, Sertçelik I (2016) Correlating physico-mechanical properties of intact rocks with P-wave velocity. Acta Geodyn Geophys 51:571–582

    Article  Google Scholar 

  • Madhubabu N, Singh PK, Kainthola A, Mahanta B, Tripathy A, Singh TN (2016) Prediction of compressive strength and elastic modulus of carbonate rocks. Measurement 88:202–213

    Article  Google Scholar 

  • Minaeian B, Ahangari K (2013) Estimation of uniaxial compressive strength based on P-wave and Schmidt hammer rebound using statistical method. Arab J Geosci 6:1925–1931

    Article  Google Scholar 

  • Mishra DA, Basu A (2013) Estimation of uniaxial compressive strength of rock materials by index tests using regression analysis and fuzzy inference system. Eng Geol 160:54–68

    Article  Google Scholar 

  • Mishra DA, Srigyan M, Basu A, Rokade PJ (2015) Soft computing methods for estimating the uniaxial compressive strength of intact rock from index tests. Int J Rock Mech Min 80:418–424

    Article  Google Scholar 

  • Momeni E, Nazir R, Armaghani DJ, Mohamad ET (2015) Prediction of unconfined compressive strength of rocks: a review paper. J Teknol 77(11):43–50

    Google Scholar 

  • O’Rourke JE (1989) Rock index properties for geoengineering in underground development. Min Eng 41(2):106–110

    Google Scholar 

  • Palchik V, Hatzor YH (2004) The influence of porosity on tensile and compressive strength of porous chalk. Rock Mech Rock Eng 37(4):331–341

    Article  Google Scholar 

  • Parent T, Domede N, Sellier A, Mouatt L (2015) Mechanical characterization of limestone from sound velocity measurement. Int J Rock Mech Min 79:149–156

    Article  Google Scholar 

  • Proceq (2014) Pundit lab/Pundit lab+ ultrasonic instrument operating instructions. Proceq SA, Zurich, p 31

  • Proceq (2016) Portable nondestructive concrete testing instrument. Proceq SA, Zurich, p 10

  • Sachpazis CI (1990) Correlating Schmidt hardness with compressive strength and Young’s modulus of carbonate rocks. Bull Int Assoc Eng Geol 42(1):75–83

    Article  Google Scholar 

  • Samsudin R, Saad P, Shabri A (2011) River flow time series using least squares support vector machines. Hydrol Earth Syst Sc 15(6):1835–1852

    Article  Google Scholar 

  • Sarkar K, Tiwary A, Singh TN (2010) Estimation of strength parameters of rock using artificial neural networks. B Eng Geol Environ 69(4):599–606

    Article  Google Scholar 

  • Schmidt E (1951) Investigations with the new concrete test hammer for estimating the quality of concrete. Schweizer Archive angerwandte Wissenschaft Technik (Solothurn) 17(5):139

  • Selçuk L, Nar A (2015) Prediction of uniaxial compressive strength of intact rocks using ultrasonic pulse velocity and rebound-hammer number. Q J Eng Geol Hydrogeol 49(1):67–75

    Article  Google Scholar 

  • Selçuk L, Yabalak E (2015) Evaluation of the ratio between uniaxial compressive strength and Schmidt hammer rebound number and its effectiveness in predicting rock strength. Nondestruct Test Eva 30(1):1–12

    Article  Google Scholar 

  • Shabri A, Suhartono (2012) Streamflow forecasting using least-squares support vector machines. Hydrol Sci J 57(7):1275–1293

    Article  Google Scholar 

  • Shalabi FI, Cording EJ, Al-Hattamleh OH (2007) Estimation of rock engineering properties using hardness tests. Eng Geol 90(3):138–147

    Article  Google Scholar 

  • Sharma PK, Singh TN (2008) A correlation between P-wave velocity, impact strength index, slake durability index and uniaxial compressive strength. B Eng Geol Environ 67(1):17–22

    Article  Google Scholar 

  • Sharma PK, Khandelwal M, Singh TN (2011) A correlation between Schmidt hammer rebound numbers with impact strength index, slake durability index and P-wave velocity. Int J Earth Sci 100(1):189–195

    Article  Google Scholar 

  • Sönmez H, Tuncay E, Gökçeoğlu C (2004) Models to predict the uniaxial compressive strength and the modulus of elasticity for Ankara agglomerate. Int J Rock Mech Min 41(5):717–729

    Article  Google Scholar 

  • Sönmez H, Gökçeoğlu C, Nefeslioğlu HA, Kayabaşı A (2006) Estimation of rock modulus: for intact rocks with an artificial neural network and for rock masses with a new empirical equation. Int J Rock Mech Min 43(2):224–235

    Article  Google Scholar 

  • Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300

    Article  Google Scholar 

  • Suykens JAK, Van Gestel T, De Brabanter J, De Moor B, Vandewalle J (2002) Least squares support vector machines. World Scientific, Singapore 294p

    Book  Google Scholar 

  • Tiryaki B (2008) Predicting intact rock strength for mechanical excavation using multivariate statistics, artificial neural networks and regression trees. Eng Geol 99(1–2):51–60

    Article  Google Scholar 

  • Tütmez B, Tercan AE (2007) Spatial estimation of some mechanical properties of rocks by fuzzy modelling. Comput Geotech 34(1):10–18

    Article  Google Scholar 

  • Vasanelli E, Calia A, Colangiuli D, Micelli F, Aiello MA (2016) Assessing the reliability of non-destructive and moderately invasive techniques for the evaluation of uniaxial compressive strength of stone masonry units. Constr Build Mater 124:575–581

    Article  Google Scholar 

  • Viswanathan R, Samui P (2016) Determination of rock depth using artificial intelligence techniques. Geosci Front 7(1):61–66

    Article  Google Scholar 

  • Yağız S (2009) Predicting uniaxial compressive strength, modulus of elasticity and index properties of rocks using the Schmidt hammer. B Eng Geol Environ 68(1):55–63

    Article  Google Scholar 

  • Yağız S, Sezer EA, Gökçeoğlu C (2012) Artificial neural networks and nonlinear regression techniques to assess the influence of slake durability cycles on the prediction of uniaxial compressive strength and modulus of elasticity for carbonate rocks. Int J Numer Anal Methods Geomech 36(14):1636–1650

    Article  Google Scholar 

  • Yaşar E, Erdoğan E (2004a) Correlating sound velocity with the density, compressive strength and Young’s modulus of carbonate rocks. Int J Rock Mech Min 41:871–875

    Article  Google Scholar 

  • Yaşar E, Erdoğan Y (2004b) Estimation of rock physicomechanical properties using hardness methods. Eng Geol 71(3):281–288

    Article  Google Scholar 

  • Yılmaz I, Sendir H (2002) Correlation of Schmidt hardness with unconfined compressive strength and Young’s modulus in gypsum from Sivas (Turkey). Eng Geol 66(3):211–219

    Article  Google Scholar 

  • Yılmaz I, Yüksek AG (2008) An example of artificial neural network (ANN) application for indirect estimation of rock parameters. Rock Mech Rock Eng 41(5):781–795

    Article  Google Scholar 

  • Yılmaz I, Yüksek G (2009) Prediction of the strength and elasticity modulus of gypsum using multiple regression, ANN, and ANFIS models. Int J Rock Mech Min 46(4):803–810

    Article  Google Scholar 

  • Zhu C, Zhao H, Zhao M (2014) Back analysis of geomechanical parameters in underground engineering using artificial bee colony. Sci World J 2014(693812):13

    Google Scholar 

  • Zhu C, Zhao H, Ru Z (2015) LSSVM-based rock failure criterion and its application in numerical simulation. Math Probl Eng 2015(246068):13

    Google Scholar 

Download references

Acknowledgements

The author wishes to express his sincere gratitude to geological engineers Ozan Düdükçü and Emin Deymeci from Ece and Çoban Marble Companies in Denizli, Turkey, respectively, for their support in sample supply and preparation. The author also wishes to express his kind regards to Dr. Fatih Dikbaş for English language editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sefer Beran Çelik.

Additional information

Editorial handling: Ali Karrech

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çelik, S.B. Prediction of uniaxial compressive strength of carbonate rocks from nondestructive tests using multivariate regression and LS-SVM methods. Arab J Geosci 12, 193 (2019). https://doi.org/10.1007/s12517-019-4307-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-019-4307-2

Keywords

Navigation