Skip to main content

Advertisement

Log in

Genes and Gene Networks Implicated in Aggression Related Behaviour

  • Original Article
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

Aggressive behaviour is a major cause of mortality and morbidity. Despite of moderate heritability estimates, progress in identifying the genetic factors underlying aggressive behaviour has been limited. There are currently three genetic mouse models of high and low aggression created using selective breeding. This is the first study to offer a global transcriptomic characterization of the prefrontal cortex across all three genetic mouse models of aggression. A systems biology approach has been applied to transcriptomic data across the three pairs of selected inbred mouse strains (Turku Aggressive (TA) and Turku Non-Aggressive (TNA), Short Attack Latency (SAL) and Long Attack Latency (LAL) mice and North Carolina Aggressive (NC900) and North Carolina Non-Aggressive (NC100)), providing novel insight into the neurobiological mechanisms and genetics underlying aggression. First, weighted gene co-expression network analysis (WGCNA) was performed to identify modules of highly correlated genes associated with aggression. Probe sets belonging to gene modules uncovered by WGCNA were carried forward for network analysis using ingenuity pathway analysis (IPA). The RankProd non-parametric algorithm was then used to statistically evaluate expression differences across the genes belonging to modules significantly associated with aggression. IPA uncovered two pathways, involving NF-kB and MAPKs. The secondary RankProd analysis yielded 14 differentially expressed genes, some of which have previously been implicated in pathways associated with aggressive behaviour, such as Adrbk2. The results highlighted plausible candidate genes and gene networks implicated in aggression-related behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. World Health Organization W: Third Milestones of a Global Campaign for Violence Prevention Report 2007: Scaling Up. In. Geneva, Switzerland: WHO; 2007.

  2. McGuire J (2008) A review of effective interventions for reducing aggression and violence. Philos Trans R Soc Lond B Biol Sci 363(1503):2577–2597

    Article  PubMed  PubMed Central  Google Scholar 

  3. Seroczynski AD, Bergeman CS, Coccaro EF (1999) Etiology of the impulsivity/aggression relationship: Genes or environment? Psychiatry Res 86(1):41–57

    Article  PubMed  CAS  Google Scholar 

  4. Miles DR, Carey G (1997) Genetic and environmental architecture of human aggression. J Pers Soc Psychol 72(1):207–217

    Article  PubMed  CAS  Google Scholar 

  5. Vassos E, Collier DA, Fazel S: Systematic meta-analyses and field synopsis of genetic association studies of violence and aggression. Molecular psychiatry 2013.

  6. Siever LJ (2008) Neurobiology of aggression and violence. Am J Psychiatry 165(4):429–442

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nelson RJ, Trainor BC (2007) Neural mechanisms of aggression. Nat Rev Neurosci 8(7):536–546

    Article  PubMed  CAS  Google Scholar 

  8. Brown GL, Goodwin FK, Ballenger JC, Goyer PF, Major LF (1979) Aggression in humans correlates with cerebrospinal fluid amine metabolites. Psychiatry Res 1(2):131–139

    Article  PubMed  CAS  Google Scholar 

  9. Linnoila M, Virkkunen M, Scheinin M, Nuutila A, Rimon R, Goodwin FK (1983) Low cerebrospinal fluid 5-hydroxyindoleacetic acid concentration differentiates impulsive from nonimpulsive violent behavior. Life Sci 33(26):2609–2614

    Article  PubMed  CAS  Google Scholar 

  10. de Boer SF, Koolhaas JM (2005) 5-HT1A and 5-HT1B receptor agonists and aggression: a pharmacological challenge of the serotonin deficiency hypothesis. Eur J Pharmacol 526(1–3):125–139

    Article  PubMed  Google Scholar 

  11. Saudou F, Amara DA, Dierich A, LeMeur M, Ramboz S, Segu L, Buhot MC, Hen R (1994) Enhanced aggressive behavior in mice lacking 5-HT1B receptor. Science 265(5180):1875–1878

    Article  PubMed  CAS  Google Scholar 

  12. Brunner HG, Nelen M, Breakefield XO, Ropers HH, van Oost BA (1993) Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science 262(5133):578–580

    Article  PubMed  CAS  Google Scholar 

  13. Caspi A, McClay J, Moffitt TE, Mill J, Martin J, Craig IW, Taylor A, Poulton R (2002) Role of genotype in the cycle of violence in maltreated children. Science 297(5582):851–854

    Article  PubMed  CAS  Google Scholar 

  14. Moffitt TE (2005) The new look of behavioral genetics in developmental psychopathology: Gene-environment interplay in antisocial behaviors. Psychol Bull 131(4):533–554

    Article  PubMed  Google Scholar 

  15. Ficks CA, Waldman ID: Candidate Genes for Aggression and Antisocial Behavior: A Meta-analysis of Association Studies of the 5HTTLPR and MAOA-uVNTR. Behavior genetics 2014.

  16. Lagerspetz K (1961) Genetic and social causes of aggressive behaviour in mice. Scand J Psychol 2(1):167–173

    Article  Google Scholar 

  17. van Oortmerssen GA, Bakker TC (1981) Artificial selection for short and long attack latencies in wild Mus musculus domesticus. Behav Genet 11(2):115–126

    Article  PubMed  Google Scholar 

  18. Sandnabba NK (1986) Effects of selective breeding for high and low aggressiveness and of fighting experience on odor discrimination in mice. Aggress Behav 12(5):359–366

    Article  Google Scholar 

  19. Natarajan D, Caramaschi D (2010) Animal violence demystified. Front Behav Neurosci 4:9

    PubMed  PubMed Central  Google Scholar 

  20. Sluyter F, Arseneault L, Moffitt TE, Veenema AH, de Boer S, Koolhaas JM (2003) Toward an animal model for antisocial behavior: Parallels between mice and humans. Behav Genet 33(5):563–574

    Article  PubMed  Google Scholar 

  21. Brower MC, Price BH (2001) Neuropsychiatry of frontal lobe dysfunction in violent and criminal behaviour: a critical review. J Neurol Neurosurg Psychiatry 71(6):720–726

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. De Bruin JPC (1990) Orbital prefrontal cortex, dopamine, and social-agonistic behavior of male long evans rats. Aggress Behav 16(3–4):231–248

    Article  Google Scholar 

  23. Enserink M (2000) Searching for the Mark of Cain. Science 289(5479):575–579

    Article  PubMed  CAS  Google Scholar 

  24. Raine A, Lencz T, Bihrle S, LaCasse L, Colletti P (2000) Reduced prefrontal gray matter volume and reduced autonomic activity in antisocial personality disorder. Arch Gen Psychiatry 57(2):119–127, discussion 128–119

    Article  PubMed  CAS  Google Scholar 

  25. Keune PM, van der Heiden L, Varkuti B, Konicar L, Veit R, Birbaumer N (2012) Prefrontal brain asymmetry and aggression in imprisoned violent offenders. Neurosci Lett 515(2):191–195

    Article  PubMed  CAS  Google Scholar 

  26. Takahashi A, Nagayasu K, Nishitani N, Kaneko S, Koide T (2014) Control of intermale aggression by medial prefrontal cortex activation in the mouse. PLoS One 9(4):e94657

    Article  PubMed  PubMed Central  Google Scholar 

  27. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma 9:559

    Article  Google Scholar 

  28. Malki K, Tosto MG, Jumabhoy I, Lourdusamy A, Sluyter F, Craig I, Uher R, McGuffin P, Schalkwyk LC (2013) Integrative mouse and human mRNA studies using WGCNA nominates novel candidate genes involved in the pathogenesis of major depressive disorder. Pharmacogenomics 14(16):1979–1990

    Article  PubMed  CAS  Google Scholar 

  29. Ghazalpour A, Doss S, Zhang B, Wang S, Plaisier C, Castellanos R, Brozell A, Schadt EE, Drake TA, Lusis AJ et al (2006) Integrating genetic and network analysis to characterize genes related to mouse weight. PLoS Genet 2(8):e130

    Article  PubMed  PubMed Central  Google Scholar 

  30. Malki K, Keers R, Tosto MG, Lourdusamy A, Carboni L, Domenici E, Uher R, McGuffin P, Schalkwyk LC (2014) The endogenous and reactive depression subtypes revisited: integrative animal and human studies implicate multiple distinct molecular mechanisms underlying major depressive disorder. BMC medicine 12(1):73

    Article  PubMed  PubMed Central  Google Scholar 

  31. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4(2):249–264

    Article  PubMed  Google Scholar 

  32. Gautier L, Cope L, Bolstad BM, Irizarry RA: affy--analysis of Affymetrix GeneChip data at the probe level. Bioinformatics (Oxford, England) 2004, 20(3):307–315.

  33. Liu WM, Mei R, Di X, Ryder TB, Hubbell E, Dee S, Webster TA, Harrington CA, Ho MH, Baid J et al (2002) Analysis of high density expression microarrays with signed-rank call algorithms. Bioinformatics 18(12):1593–1599

    Article  PubMed  CAS  Google Scholar 

  34. Stacklies W, Redestig H, Scholz M, Walther D, Selbig J (2007) pcaMethods--a bioconductor package providing PCA methods for incomplete data. Bioinformatics 23(9):1164–1167

    Article  PubMed  CAS  Google Scholar 

  35. Ingenuity Pathway Analysis [www.qiagen.com/ingenuity]

  36. Breitling R, Armengaud P, Amtmann A, Herzyk P (2004) Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett 573(1–3):83–92

    Article  PubMed  CAS  Google Scholar 

  37. Breitling R, Herzyk P (2005) Rank-based methods as a non-parametric alternative of the T-statistic for the analysis of biological microarray data. J Bioinforma Comput Biol 3(5):1171–1189

    Article  CAS  Google Scholar 

  38. Oeckinghaus A, Hayden MS, Ghosh S (2011) Crosstalk in NF-kappaB signaling pathways. Nat Immunol 12(8):695–708

    Article  PubMed  CAS  Google Scholar 

  39. Waterfield MR, Zhang M, Norman LP, Sun SC (2003) NF-kappaB1/p105 regulates lipopolysaccharide-stimulated MAP kinase signaling by governing the stability and function of the Tpl2 kinase. Mol Cell 11(3):685–694

    Article  PubMed  CAS  Google Scholar 

  40. Konat GW, Kielian T, Marriott I (2006) The role of Toll-like receptors in CNS response to microbial challenge. J Neurochem 99(1):1–12

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Feldker DE, Datson NA, Veenema AH, Meulmeester E, de Kloet ER, Vreugdenhil E (2003) Serial analysis of gene expression predicts structural differences in hippocampus of long attack latency and short attack latency mice. Eur J Neurosci 17(2):379–387

    Article  PubMed  Google Scholar 

  42. Sluyter F, Jamot L, van Oortmerssen GA, Crusio WE (1994) Hippocampal mossy fiber distributions in mice selected for aggression. Brain Res 646(1):145–148

    Article  PubMed  CAS  Google Scholar 

  43. Rao JS, Ertley RN, Lee HJ, DeMar JC Jr, Arnold JT, Rapoport SI, Bazinet RP (2007) n-3 polyunsaturated fatty acid deprivation in rats decreases frontal cortex BDNF via a p38 MAPK-dependent mechanism. Mol Psychiatry 12(1):36–46

    Article  PubMed  CAS  Google Scholar 

  44. Coccaro EF, Lee R, Coussons-Read M (2014) Elevated plasma inflammatory markers in individuals with intermittent explosive disorder and correlation with aggression in humans. JAMA psychiatry 71(2):158–165

    Article  PubMed  Google Scholar 

  45. Coccaro EF, Lee R, Gozal D: Elevated Plasma Oxidative Stress Markers in Individuals with Intermittent Explosive Disorder and Correlation with Aggression in Humans. Biological psychiatry 2014.

  46. Veenema AH, Meijer OC, de Kloet ER, Koolhaas JM, Bohus BG (2003) Differences in basal and stress-induced HPA regulation of wild house mice selected for high and low aggression. Horm Behav 43(1):197–204

    Article  PubMed  CAS  Google Scholar 

  47. de Kloet ER, Joels M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6(6):463–475

    Article  PubMed  Google Scholar 

  48. Gray JD, Rubin TG (2013) Hunter RG. Hippocampal gene expression changes underlying stress sensitization and recovery. Molecular psychiatry, McEwen BS

    Google Scholar 

  49. Rachal Pugh C, Fleshner M, Watkins LR, Maier SF, Rudy JW (2001) The immune system and memory consolidation: a role for the cytokine IL-1beta. Neurosci Biobehav Rev 25(1):29–41

    Article  PubMed  CAS  Google Scholar 

  50. Goshen I, Yirmiya R (2009) Interleukin-1 (IL-1): a central regulator of stress responses. Front Neuroendocrinol 30(1):30–45

    Article  PubMed  CAS  Google Scholar 

  51. Lehmann ML, Brachman RA, Listwak SJ, Herkenham M (2010) NF-kappaB activity affects learning in aversive tasks: Possible actions via modulation of the stress axis. Brain Behav Immun 24(6):1008–1017

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Barrett TB, Hauger RL, Kennedy JL, Sadovnick AD, Remick RA, Keck PE, McElroy SL, Alexander M, Shaw SH, Kelsoe JR (2003) Evidence that a single nucleotide polymorphism in the promoter of the G protein receptor kinase 3 gene is associated with bipolar disorder. Mol Psychiatry 8(5):546–557

    Article  PubMed  CAS  Google Scholar 

  53. Barrett TB, Emberton JE, Nievergelt CM, Liang SG, Hauger RL, Eskin E, Schork NJ, Kelsoe JR (2007) Further evidence for association of GRK3 to bipolar disorder suggests a second disease mutation. Psychiatr Genet 17(6):315–322

    Article  PubMed  Google Scholar 

  54. Rao JS, Rapoport SI, Kim HW (2009) Decreased GRK3 but not GRK2 expression in frontal cortex from bipolar disorder patients. Int J Neuropsychopharmacol 12(6):851–860

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Young KA, Berry ML, Mahaffey CL, Saionz JR, Hawes NL, Chang B, Zheng QY, Smith RS, Bronson RT, Nelson RJ et al (2002) Fierce: a new mouse deletion of Nr2e1: Violent behaviour and ocular abnormalities are background-dependent. Behav Brain Res 132(2):145–158

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Wong BK, Hossain SM, Trinh E, Ottmann GA, Budaghzadeh S, Zheng QY, Simpson EM (2010) Hyperactivity, startle reactivity and cell-proliferation deficits are resistant to chronic lithium treatment in adult Nr2e1(frc/frc) mice. Genes Brain Behav 9(7):681–694

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Labonte B, Suderman M, Maussion G, Lopez JP, Navarro-Sanchez L, Yerko V, Mechawar N, Szyf M, Meaney MJ, Turecki G (2013) Genome-wide methylation changes in the brains of suicide completers. Am J Psychiatry 170(5):511–520

    Article  PubMed  Google Scholar 

  58. Sluyter F, Takahashi A, Maxson SC: Pathological aggression In: Behavioral Genetics of the Mouse. Edited by Pietropaolo S, Sluyter F, Crusio WE, vol. 2. Published online at http://www.cambridge.org: Cambridge University Press; 2014.

Download references

Acknowledgments

Karim Malki is supported by an MRC grant (G9817803). At the time of writing, Oliver Pain and Ebba Du Rietze were enrolled on the GED programme at the SGDP centre at the Institute of Psychiatry, King′s College London. We are grateful to the Director of the Programme, Dr. Cathy Fernandez for her support with this project.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Malki.

Additional information

Karim Malki and Oliver Pain has contributed equally to this work

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Flash clustered factors to identify any clear outliers. Red line shows height cut off (T = 43) marking outlying factors. (PDF 93 kb)

Supplementary Figure 2

Analysis of network topology for various soft-thresholding powers. Panel A shows the scale-free sit index (y-axis) as a function of the soft-thresholding power (x-axis). Panel B shows the mean connectivity (degree, y-axis) as a function of the soft thresholding power (x-axis). Shows the scale-free topology fit index curve flattens at approximately 0.9, determining a soft threshold of 10. (PDF 131 kb)

Supplementary Figure 3

Screen plot showing the percentage of variance explained by the principle components identified in the data. (PDF 108 kb)

Supplementary Figure 4

PCA was unable to identify any structure in the data representing gene expression differences based on aggression state. This is expected, as more predominant global-transcriptomic changes, dependent on aggression state, would have to occur for it to be detectable via PCA. However no outliers were detected. (PDF 99 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malki, K., Pain, O., Du Rietz, E. et al. Genes and Gene Networks Implicated in Aggression Related Behaviour. Neurogenetics 15, 255–266 (2014). https://doi.org/10.1007/s10048-014-0417-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-014-0417-x

Keywords

Navigation