Skip to main content
Log in

Simultaneous measurement of temperature and strain using a single fiber bragg grating on a tilted cantilever beam

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Importance of simultaneous measurement of temperature and strain by fiber Bragg grating (FBG) sensors has led to innovation of several renewing techniques. Most of them are based on two FBGs configurations or one non-uniform FBG implementation. Both temperature and strain changes can result in Bragg wavelength shift in reflected spectrum from a uniform FBG. We propose using full width at half maximum (FWHM) of the reflection spectrum as a cross-sensitivity indicator for simultaneous measurement of temperature and strain using only one FBG. When a non-uniform strain is applied to a sample which a uniform FBG is stuck on it, in addition to the Bragg wavelength, FWHM of the reflection spectrum changes. This FWHM change besides the Bragg wavelength shift is used to obtain simultaneously strain and temperature. When a uniform strain is applied to the sample, we get the help of cantilever beam concept. We place a ramp with an angle of θ, similar to a tilted cantilever beam, on a sample under test and stick a FBG on the ramp. A uniform strain applied to the sample, creates a strain gradient along the cantilever beam and of course along the FBG causing a change in the FWHM of reflection spectrum. This FWHM change besides the Bragg wavelength shift is used to obtain simultaneously strain and temperature. In our simulation results, temperature sensitivity of the FBG is 14.2 pm/℃ for Bragg wavelength with no change in the FWHM and strain sensitivity is 0.453 pm/με for Bragg wavelength and a nonlinear sensitivity according to a quadratic function for FWHM variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bao, X., Chen, L.: Recent progress in distributed fiber optic sensors. Sensors 12(7), 8601–8639 (2012)

    Article  ADS  Google Scholar 

  2. Malakzadeh, A., Mansoursamaei, M.: New matrix solution of the phase-correlation technique in a Brillouin dynamic grating sensor. J Opt Technol 85(10), 644–647 (2018)

    Article  Google Scholar 

  3. Lu, P., et al.: Distributed optical fiber sensing: Review and perspective. Appl Phys Rev 6(4), 041302 (2019)

    Article  Google Scholar 

  4. Malakzadeh, A., Pashaie, R., Mansoursamaei, M.: 150 km φ-OTDR sensor based on erbium and Raman amplifiers. Opt Quant Electron 52(6), 1–8 (2020)

    Article  Google Scholar 

  5. Malakzadeh, A., Pashaie, R., Mansoursamaei, M.: Gain and noise figure performance of an EDFA pumped at 980 nm or 1480 nm for DOFSs. Opt Quant Electron 52(2), 75 (2020)

    Article  Google Scholar 

  6. Barrias, A., Casas, J.R., Villalba, S.: A review of distributed optical fiber sensors for civil engineering applications. Sensors 16(5), 748 (2016)

    Article  ADS  Google Scholar 

  7. Malakzadeh, A., Didar, M., Mansoursamaei, M.: SNR enhancement of a Raman distributed temperature sensor using partial window-based non local means method. Opt Quant Electron 53(3), 147 (2021)

    Article  Google Scholar 

  8. Mihailov, S.J.: Fiber Bragg grating sensors for harsh environments. Sensors 12(2), 1898–1918 (2012)

    Article  ADS  Google Scholar 

  9. Malakzadeh, A., Mansoursamaei, M., Pashaie, R.: A novel technique in BDG sensors: combination of phase and frequency correlation techniques. Opt Quant Electron 52(9), 1–10 (2020)

    Article  Google Scholar 

  10. Campanella, C.E., Cuccovillo, A., et al.: Fibre Bragg grating based strain sensors: review of technology and applications. Sensors 18(9), 3115 (2018)

    Article  ADS  Google Scholar 

  11. Li, T., et al.: A non-contact FBG vibration sensor with double differential temperature compensation. Opt Rev 23(1), 26–32 (2016)

    Article  Google Scholar 

  12. Qi, Y., et al.: Simultaneous measurement of temperature and humidity based on FBG-FP cavity. Optics Commun 452, 25–30 (2019)

    Article  ADS  Google Scholar 

  13. Ferreira, L.A.A., et al.: Simultaneous measurement of strain and temperature using interferometrically interrogated fiber Bragg grating sensors. Opt Eng 39(8), 2226–2234 (2000)

    Article  ADS  Google Scholar 

  14. Mizunami, T., Yamada, T., Tsuchiya, S.: Interrogation of fiber-Bragg-grating temperature and strain sensors with a temperature-stabilized VCSEL. Opt Rev 23(5), 703–707 (2016)

    Article  Google Scholar 

  15. Gao, X., et al.: A dual-parameter fiber sensor based on few-mode fiber and fiber Bragg grating for strain and temperature sensing. Optics Communications 454, 124441 (2020)

    Article  Google Scholar 

  16. Guo, K., et al.: Simultaneous measurement of strain and temperature by a sawtooth stressor-assisted highly birefringent fiber bragg grating. J Lightwave Technol 38(7), 2060–2066 (2020)

    Article  ADS  Google Scholar 

  17. Tian, J., et al.: Cascaded-cavity fabry-perot interferometer for simultaneous measurement of temperature and strain with cross-sensitivity compensation. Optics Commun 412, 121–126 (2018)

    Article  ADS  Google Scholar 

  18. Jiang, N., et al.: Simultaneous discrimination of strain and temperature using dual-gratings in one fiber. Optik 126(23), 3974–3977 (2015)

    Article  ADS  Google Scholar 

  19. Tao, S., Dong, X., Lai, B.: A sensor for simultaneous measurement of displacement and temperature based on the Fabry-Perot effect of a fiber Bragg grating. IEEE Sens J 17(2), 261–266 (2016)

    Article  ADS  Google Scholar 

  20. Song, M., et al.: Interferometric temperature-insensitive strain measurement with different-diameter fiber Bragg gratings. Opt Lett 22(11), 790–792 (1997)

    Article  ADS  Google Scholar 

  21. Iwashima, T., et al.: Temperature compensation technique for fibre Bragg gratings using liquid crystalline polymer tubes. Electron Lett 33(5), 417–419 (1997)

    Article  ADS  Google Scholar 

  22. Chang, H.Y., et al.: In-fiber long-period grating and fiber bragg grating-based sensor for simultaneously monitoring remote temperature and stress. Sens Mater 30(1), 23–32 (2018)

    Google Scholar 

  23. Kang, Z., et al.: Twin-core fiber-based erbium-doped fiber laser sensor for decoupling measurement of temperature and strain. IEEE Sens J 15(12), 6828–6832 (2015)

    Article  ADS  Google Scholar 

  24. Li, C., et al.: Simultaneous measurement of refractive index, strain, and temperature based on a four-core fiber combined with a fiber Bragg grating. Opt Laser Technol 90, 179–184 (2017)

    Article  ADS  Google Scholar 

  25. Guo, T., Zhang, T., Qiao, X.: FBG-EFPI sensor for large strain measurement with low temperature crosstalk. Optics Commun 9, 125945 (2020)

    Article  Google Scholar 

  26. Guan, B., et al.: Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating. IEEE Photonics Technol. Lett. 12(6), 675–677 (2000)

    Article  ADS  Google Scholar 

  27. Sampath, U., et al.: Polymer-coated FBG sensor for simultaneous temperature and strain monitoring in composite materials under cryogenic conditions. Appl. Opt. 57(3), 492–497 (2018)

    Article  ADS  Google Scholar 

  28. Qazi, H.H., et al.: D-shaped polarization maintaining fiber sensor for strain and temperature monitoring. Sensors. 16(9), 1505 (2016)

    Article  ADS  Google Scholar 

  29. Lv, L., et al.: Simultaneous measurement of strain and temperature by two peanut tapers with embedded fiber Bragg grating. Appl Opt 54(36), 10678–10683 (2015)

    Article  ADS  Google Scholar 

  30. Liu, H., et al.: Strain measurement at high temperature environment based on Fabry-Perot interferometer cascaded fiber regeneration grating. Sens Actu A 248, 199–205 (2016)

    Article  Google Scholar 

  31. Kouhrangiha, F., Kahrizi, M., Khorasani, K.: Structural health monitoring using apodized pi-phase shifted FBG: decoupling strain and temperature effects 2019 IEEE sENSORS. IEEE 1, 30 (2019)

    Google Scholar 

  32. Jiang, Y., et al.: Multi-parameter sensing using a fiber Bragg grating inscribed in dual-mode fiber. IEEE Photonics Technol Lett 29(19), 1607–1610 (2017)

    Article  ADS  Google Scholar 

  33. Liu, W., Li, W., Yao, J.: Real-time interrogation of a linearly chirped fiber Bragg grating sensor for simultaneous measurement of strain and temperature. IEEE Photonics Technol Lett 23(18), 1340–1342 (2011)

    Article  ADS  Google Scholar 

  34. He, X.L., et al.: A Cascade Fiber Optic Sensors for Simultaneous Measurement of Strain and Temperature. IEEE Sensors Letters 3(11), 1–4 (2019)

    Article  Google Scholar 

  35. Her, S.C., Lin, W.N.: Simultaneous measurement of temperature and mechanical strain using a fiber bragg grating sensor. Sensors. 20(15), 4223 (2020)

    Article  ADS  Google Scholar 

  36. Vorathin, E., Hafizi, Z.M.: Bandwidth modulation and centre wavelength shift of a single FBG for simultaneous water level and temperature sensing. Measurement 163, 107955 (2020)

    Article  Google Scholar 

  37. Xia, X., et al.: Half-size metal-packaged fiber Bragg grating for simultaneous measurement of strain and temperature. Opt Eng 58(11), 116104 (2019)

    Article  ADS  Google Scholar 

  38. Sarkar, S., et al.: Discrimination between strain and temperature effects of a single fiber Bragg grating sensor using sidelobe power. J. Appl. Phys. 127(11), 114503 (2020)

    Article  ADS  Google Scholar 

  39. Mizutani, Y., Groves, R.M.: Multi-functional measurement using a single FBG sensor. Exp Mech 51(9), 1489–1498 (2011)

    Article  Google Scholar 

  40. Du, J., He, Z.: Sensitivity enhanced strain and temperature measurements based on FBG and frequency chirp magnification. Opt Express 21(22), 27111–27118 (2013)

    Article  ADS  Google Scholar 

  41. Ling, H.Y., et al.: Embedded fiber Bragg grating sensors for non-uniform strain sensing in composite structures. Meas Sci Technol 16(12), 2415 (2005)

    Article  ADS  Google Scholar 

  42. Jin, L., et al.: Two-dimensional bend sensing with a cantilever-mounted FBG. Meas Sci Technol 17(1), 168 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdollah Malakzadeh.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansoursamaei, M., Malakzadeh, A. Simultaneous measurement of temperature and strain using a single fiber bragg grating on a tilted cantilever beam. Opt Rev 28, 289–294 (2021). https://doi.org/10.1007/s10043-021-00660-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-021-00660-w

Keywords

Navigation