Skip to main content
Log in

Hydrogeological characterization and utilization of the Siguatepeque aquifer, Honduras

Caractérisation hydrogéologique et utilisation de l’aquifère de Siguatepeque, Honduras

Caracterización hidrogeológica y aprovechamiento del acuífero de Siguatepeque, Honduras

洪都拉斯Siguatepeque含水层的水文地质特征及利用

Caracterização e utilização hidrogeológica do aquífero Siguatepeque, Honduras

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Sustainable groundwater management is based on hydrogeological information that is usually nonexistent, outdated, or incomplete in developing countries like Honduras. Such is the case of the Siguatepeque aquifer where adequate management strategies are not implemented, jeopardizing the sustainability of the aquifer, which is currently the most important source for water supply. This study determines the hydrogeological units and water balances of the aquifer as a basis for groundwater management. The aquifer limits and a conceptual model were defined, and hydrogeological parameters were compiled based on previous studies. For the first time, a complete well inventory was registered and mapped. Static levels were measured in 25 wells and, based on previous data, it was possible to perform a historical analysis. Recharge was calculated through a soil water balance and extraction was estimated based on 105 monitored wells. Based on hydrogeological conditions, the aquifer (228 km2) is classified as semiconfined with intermediate to low yield for groundwater supply. Average recharge was calculated as 10.7 million m3/year (47.1 mm/year). Wells (506) were registered in the inventory and the average extraction was estimated as 4.5 million m3/year, representing 41.7% of average recharge. Analysis of historical data shows a decrease of groundwater levels especially in the urban area, where almost 80% of the wells are located. In this area, extraction exceeds recharge by 93%. Considering the aquifer’s hydrogeological characteristics and dynamics, and its current utilization regime, the urban area may be facing overexploitation and counter measures should be implemented to avoid further aquifer depletion.

Résumé

La gestion durable des eaux souterraines repose sur des informations hydrogéologiques qui sont généralement inexistantes, obsolètes ou incomplètes dans les pays en développement comme le Honduras. C’est le cas de l’aquifère de Siguatepeque, où des stratégies de gestion adéquates ne sont pas mises en œuvre, mettant en péril la durabilité de l’aquifère, qui est actuellement la principale source d’approvisionnement en eau. Cette étude détermine les unités hydrogéologiques et les bilans hydriques de l’aquifère comme base pour la gestion des eaux souterraines. Les limites de l’aquifère et un modèle conceptuel ont été définis, et les paramètres hydrogéologiques ont été compilés sur la base d’études antérieures. Pour la première fois, un inventaire complet des puits a été enregistré et cartographié. Les niveaux statiques ont été mesurés dans 25 puits et, sur la base des données antérieures, il a été possible d’effectuer une analyse historique. La recharge a été calculée à l’aide d’un bilan hydrique du sol et l’extraction a été estimée sur la base de 105 puits surveillés. Sur la base des conditions hydrogéologiques, l’aquifère (228 km2) est classé comme semicaptif avec un rendement intermédiaire à faible pour l’approvisionnement en eau souterraine. La recharge moyenne a été calculée comme étant de 10.7 millions de m3/an (47.1 mm/an). Des puits (506) ont été enregistrés dans l’inventaire et l’extraction moyenne a été estimée à 4.5 millions de m3/an, ce qui représente 41.7% de la recharge moyenne. L’analyse des données historiques montre une baisse du niveau des eaux souterraines, en particulier dans la zone urbaine, où se trouvent près de 80% des puits. Dans cette zone, l’extraction excède la recharge de 93%. Compte tenu des caractéristiques hydrogéologiques et de la dynamique de l’aquifère, ainsi que de son régime d’utilisation actuel, la zone urbaine pourrait être confrontée à une surexploitation et des contre-mesures devraient être mises en œuvre pour éviter un épuisement plus important de l’aquifère.

Resumen

La gestión sostenible de las aguas subterráneas se basa en información hidrogeológica que suele ser inexistente, obsoleta o incompleta en países en desarrollo como Honduras. Tal es el caso del acuífero de Siguatepeque donde no se implementan estrategias de manejo adecuadas, poniendo en riesgo la sostenibilidad del acuífero, que actualmente es la fuente más importante para el abastecimiento de agua. Este estudio determina las unidades hidrogeológicas y los balances hídricos del acuífero como base para la gestión de las aguas subterráneas. Se definieron los límites del acuífero y un modelo conceptual, y se recopilaron parámetros hidrogeológicos basados en estudios anteriores. Por primera vez, se registró y cartografió un inventario completo de pozos. Se midieron los niveles estáticos en 25 pozos y, basándose en datos anteriores, fue posible realizar un análisis histórico. La recarga se calculó mediante un balance hídrico del suelo y la extracción se estimó basándose en 105 pozos de monitoreo. Basándose en las condiciones hidrogeológicas, el acuífero (228 km2) se clasifica como semiconfinado con un rendimiento de intermedio a bajo para el abastecimiento de aguas subterráneas. La recarga media se calculó en 10.7 millones de m3/año (47.1 mm/año). En el inventario se registraron 506 pozos y la extracción media se estimó en 4.5 millones de m3/año, lo que representa el 41.7% de la recarga media. El análisis de los datos históricos muestra un descenso del nivel de las aguas subterráneas, especialmente en la zona urbana, donde se encuentra casi el 80% de los pozos. En esta zona, la extracción supera a la recarga en un 93%. Teniendo en cuenta las características hidrogeológicas y la dinámica del acuífero, así como su régimen de utilización actual, es posible que la zona urbana esté sufriendo una sobreexplotación, por lo que deberían aplicarse una serie de medidas para evitar un mayor agotamiento del acuífero.

摘要

可持续地下水管理是基于水文地质信息建立, 而通常在类似洪都拉斯等发展中国家, 这些信息不存在、过时或不完整。Siguatepeque含水层就是这样一个案例, 其中未实施适当的管理策略, 危及了含水层的可持续性, 而该含水层目前是最重要的供水来源。本研究确定了含水层的水文地质单元和水量平衡, 以作为地下水管理的基础。定义了含水层的边界和概念模型, 并根据以前的研究整理了水文地质参数。首次完成了完整的井信息登记和绘制。在25口井中测得了静水位, 并根据以前的数据进行了历史分析。通过土壤水量平衡计算了补给量, 并根据监测的105口井估算了开采量。根据水文地质条件, 该蓄水层 (面积228 km2) 被分类为半承压的地下水中等开采到低开采量。平均补给量计算为1070万m3/year (47.1 mm/year)。井信息中登记了506口井, 估计平均开采量为450万m3/year, 相当于平均补给量的41.7%。历史数据分析显示, 地下水位出现下降, 尤其是在城区, 该地区几乎有80%的井位于其中。在该地区, 开采量超过补给量, 超量采水量为93%。考虑到含水层的水文地质特征和动态变化, 以及目前的利用状况, 城区可能面临过度开采, 应采取相应措施避免进一步损耗含水层。

Resumo

O gerenciamento sustentável de águas subterrâneas é baseado nas informações hidrogeológicas que normalmente são inexistentes, desatualizadas ou incompletas em países em desenvolvimento como Honduras. Assim é o caso do aquífero Siguatepeque onde estratégias de gerenciamento adequadas não são implementadas, prejudicando a sustentabilidade do aquífero, que é atualmente a fonte de fornecimento de água mais importante. Esse estudo determina as unidades hidrogeológicas e o balanço hídrico do aquífero como base para o gerenciamento de águas subterrâneas. Os limites do aquífero e o modelo conceitual foram definidos, e os parâmetros hidrogeológicos foram compilados baseados em estudos anteriores. Pela primeira vez, um inventário de poço completo foi registrado e mapeado. Níveis estáticos foram medidos em 25 poços, e baseado em dados anteriores, foi possível performar uma análise histórica. A recarga foi calculada através do balanço hídrico do solo e a extração foi estimada baseada em 105 poços monitorados. Baseado em condições hidrogeológicas, o aquífero (228 km2) foi classificado como semiconfinado com rendimento de baixo a intermediário para o fornecimento de água. A recarga média foi calculada como 10.7 milhões m3/ano (47.1 mm/ano). Os poços (506) foram registrados no inventário e a extração média foi estimada como 4.5 milhões m3/ano representando 41.7% da recarga média. Análise dos dados históricos demonstram uma redução nos níveis de águas subterrâneas, especialmente na área urbana, onde quase 80% dos poços estão localizados. Nessa área, a extração excede a recarga em 93%. Considerando as dinâmicas e características hidrogeológicas do aquífero, e seu regime atual de utilização, a área urbana pode enfrentar superexploração e medidas contrárias devem ser implementadas para evitar futuro esgotamento do aquífero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Adamson JK, LaVanchy GT, Stone B, Clark JA, Dykstra SJ, Taylor MJ (2021) Geological and hydrogeological assessment of the Brito Formation: Municipio de Tola, Nicaragua. Hydrogeol J 29(6):2285–2304

    Article  ADS  Google Scholar 

  • Alvarado-Batres CA (2020) Análisis de la recarga potencial del acuífero superficial en Isla de Méndez, Jiquilisco, Usulután [Analysis of the potential recharge of the superficial aquifer in Isla de Méndez, Jiquilisco, Usulután]. Rev Minerva 3(2):46–59. https://doi.org/10.5377/revminerva.v3i2.12558

    Article  Google Scholar 

  • Álvarez LC, López BA (2013) Disponibilidad de recursos hídricos en la parte media de la subcuenca “Río Tapacalí” [Availability of water resources in the middle “Río Tapacalí” sub-basin]. Universidad Centroamericana Facultad De Ciencia, Managua, Nicaragua, 93 pp

  • Bethune DN, Ryan MC (2010) The CARA Network: building Latin American capacity in hydrogeology and water resource management. J Contemp Water Res Educ 145(1):45–50. https://doi.org/10.1111/j.1936-704X.2010.00081

    Article  Google Scholar 

  • Boeglin N (2012) Acuíferos transfronterizos: respuestas desde el derecho internacional y vacíos en Centroamérica [Transboundary aquifers: responses from international law and gaps in Central America]. Bol Geol Miner 23:235–48

    Google Scholar 

  • Calderón H (2016) Retos en la evaluación de recursos hídricos en cuencas pobremente aforadas, la situación de Nicaragua y Centroamérica [Challenges in the evaluation of water resources in poorly monitored basins, the situation of Nicaragua and Central America]. Rev Científica Agua Conocimiento 2(1):49–64

    MathSciNet  Google Scholar 

  • Carrillo-Rivera JJ (2003) Lack of a conceptual system view of groundwater resources in Mexico. Hydrogeol J 11(5):519–520

    Article  ADS  Google Scholar 

  • Chavarria A (2007) Determination and analysis of groundwater in the urban area of the municipality of Siguatepeque, Comayagua, Honduras. PhD Thesis, UNACIFOR, Comayagua, Honduras, 117 pp

  • Chavarría RR (2014) Recarga Potencial de los Acuíferos Colima y Barva, Valle Central, Costa Rica [Potential recharge of the Colima and Barva aquifers, Central Valley, Costa Rica]. Repertorio Científico 17(2):51–59

    MathSciNet  Google Scholar 

  • CIAT (International Center for Tropical Agriculture) (2016) Digital mapping of soil properties in the West of Honduras, Central America. https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/QVXA7U. Accessed 15 November 2022

  • Contreras TC, Vargas I, Badilla E (2012) Propiedades hidrogeoquímicas e isotópicas del agua subterránea en la parte media de la cuenca del río Tulián, Puerto Cortés, Honduras [Hydrochemical and isotopic properties of the groundwater in the middle part of the Tulián River watershed, Puerto Cortés, Honduras]. Rev Geol Am Central 46:179–188

    Google Scholar 

  • Curran DW (1980) Geology of Siguatepeque Quadrangle Honduras, Central America. MSc Thesis, State University of New York (SUNY), Binghamton, NY, 194 pp

  • Datta B, Kourakos G (2015) Preface: optimization for groundwater characterization and management. Hydrogeol J 23(6):1043–1049

    Article  CAS  ADS  Google Scholar 

  • Garza RSM, van Hinsbergen DJ, Rogers RD, Ganerød M, Dekkers MJ (2012) The Padre Miguel Ignimbrite Suite, central Honduras: paleomagnetism, geochronology, and tectonic implications. Tectonophysics 574:144–157. https://doi.org/10.1016/j.tecto.2012.08.013

    Article  CAS  ADS  Google Scholar 

  • Gaur S, Chahar BR, Graillot D (2011) Combined use of groundwater modeling and potential zone analysis for management of groundwater. Int J Appl Earth Obs Geoinf 13(1):127–139

    Google Scholar 

  • Heiken G, Ramos N, Duffield W, Musgrave J, Wohletz K, Priest S, Aldrich J, Flores W, Ritchie A, Goff F, Eppler D, Escobar C (1991) Geology of the Platanares geothermal area, Departamento de Copán, Honduras. J Volcanol Geoth Res 45(1–2):41–58

    Article  ADS  Google Scholar 

  • Herrera IR (2017) Estudio hidrogeológico de los acuíferos volcánicos de Guatemala [Hydrogeological study of the volcanic aquifers of Guatemala]. En Centroamérica: agua, cultura y territorio, pp 60–71. https://www.upo.es/investiga/enredars/?page_id=491. Accessed September 2023

  • ICF (Forest Conservation Institute) (2018) Geoportal of the Honduran forest sector. http://www.geoportal.icf.gob.hn/geoportal/main. Accessed 15 November 2022

  • IGN (National Geographical Institute) (1973) Geological map of Siguatepeque. Cooperation program of IGN and the United States Peace Corps in Honduras, Guatemala City, Guatemala

  • Izabá-Ruiz R, García D (2018) Estimación de la disponibilidad hídrica superficial en la microcuenca del río Mapachá, San Lorenzo, Boaco [Estimation of surface water availability in the Mapachá River micro-basin, San Lorenzo, Boaco]. Rev Científica Agua Conocimiento 4:23–37

    Google Scholar 

  • Kemper KE (2004) Groundwater: from development to management. Hydrogeol J 12(1):3–5

    Article  ADS  Google Scholar 

  • Konikow LF, Kendy E (2005) Groundwater depletion: a global problem. Hydrogeol J 13:317–320. https://doi.org/10.1007/s10040-004-0411-8

    Article  CAS  ADS  Google Scholar 

  • Krakauer NY, Li H, Fan Y (2014) Groundwater flow across spatial scales: importance for climate modeling. Environ Res Lett 9(3):034003

    Article  ADS  Google Scholar 

  • Lapworth DJ, Baran N, Stuart ME, Ward RS (2012) Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ Pollut 163:287–303

    Article  CAS  PubMed  Google Scholar 

  • Monge MM (2020) Estudio hidrogeológico para la subcuenca del Río Grande, Valle Central Occidental, Costa Rica [Hydrogeological study for the Rio Grande sub-basin, Western Central Valley, Costa Rica]. Servicio Nacional de Aguas Subterráneas, Riego y Avenamiento (SENARA). Dirección de Investigación y Gestión Hídrica (DIGH), San José, Costa Rica

  • Montgomery MA, Elimelech M (2007) Water and sanitation in developing countries: including health in the equation. Environ Sci Technol 41(1):17–24

    Article  PubMed  ADS  Google Scholar 

  • Morris BL, Lawrence AR, Chilton P, Adams B, Calow RC, Klinck BA (2003) Groundwater and its susceptibility to degradation: a global assessment of the problem and options for management, vol 3. United Nations Environment Programme, Nairobi, Kenya

  • Pastor PA, Pérez RR (eds) (2008) Evaluación y prevención de riesgos ambientales en Centroamérica [Assessment and prevention of environmental risks in Central America]. Documenta Universitaria, Girona, Spain

  • Patiño-Rojas SM, Jaramillo M (2022) Estimación espaciotemporal de la recarga potencial en un sistema pseudokárstico tropical [Spatiotemporal estimation of potential recharge in a tropical pseudokarstic system]. Rev Acad Colomb Cie Exactas Físicas Natural 46(178):261–278. https://doi.org/10.18257/raccefyn.1512

    Article  Google Scholar 

  • Potgieter N, Karambwe S, Mudau LS, Barnard T, Traore A (2020) Human enteric pathogens in eight rivers used as rural household drinking water sources in the northern region of South Africa. Int J Environ Res Public Health 17(6):2079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rezaei A, Hassani H, Hassani S, Jabbari N, Mousavi SBF, Rezaei S (2019) Evaluation of groundwater quality and heavy metal pollution indices in Bazman basin, southeastern Iran. Groundw Sustain Dev 9:100245

    Article  Google Scholar 

  • Ruiz M (2022) Aplicación del Método Potencial Natural para la exploración de aguas subterránea en la zona del El Volcán El Pedregal, Tegucigalpa, Honduras [Application of the Natural Potential Method for the exploration of groundwater in the area of El Pedregal Volcano, Tegucigalpa, Honduras]. Rev Tierra 2(1):1–6

    Google Scholar 

  • Santa Cruz FJ (2005) Evaluación del estado del recurso hídrico subterraneo en la ciudad de Choluteca, Honduras [Evaluation of the state of groundwater resources in the city of Choluteca, Honduras]. Proyecto especial como requisito parcial para optar al título de Ingeniero en Desarrollo Socioeconómico y Ambiente en el grado académico de Licenciatura. Escuela Agrícola Panamericana ZAMORANO, Tegucigalpa, Honduras, 81 pp

  • Schosinsky G (2006) Cálculo de la recarga potencial de acuíferos mediante un balance hídrico de suelos [Calculation of the potential recharge of aquifers through a soil water balance]. Rev Geol Amér Central 34–35:13–30

    Google Scholar 

  • Schosinsky G, Losilla M (2011) Modelo analítico para determinar la infiltración con base en la lluvia mensual [Analytical model to determine infiltration based on monthly rainfall]. Rev Geol Amér Central (23). https://doi.org/10.15517/rgac.v0i23.8579

  • Solomon S, Quiel F (2006) Groundwater study using remote sensing and geographic information systems (GIS) in the central highlands of Eritrea. Hydrogeol J 14:1029–1041

    Article  CAS  ADS  Google Scholar 

  • Taufiq A, Hosono T, Ide K, Kagabu M, Iskandar I, Effendi AJ, Hutasoit L, Shimada J (2018) Impact of excessive groundwater pumping on rejuvenation processes in the Bandung basin (Indonesia) as determined by hydrogeochemistry and modeling. Hydrogeol J 26(4):1263–1279

    Article  CAS  ADS  Google Scholar 

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38(1):55–94

    Article  Google Scholar 

  • Trochez (2000) Hydrogeological study of the Siguatepeque aquifer, Honduras. MSc Thesis, University of Costa Rica, San Pedro, Costa Rica, 147 pp

  • UNAH (National Autonomous University of Honduras) (2022) Sociodemographic profile of Siguatepeque, Comayagua 2022. UNAH, Tegucigalpa

  • United Nations (2019) Progress of Goal 6 in 2019. Goal 6: Sustainable Development Knowledge Platform. https://www.un.org. Accessed 15 November 2022

  • United Nations (2020) Geospatial, location data for a better world. General Vision: Central America. Accessed 30 December 2022. https://www.un.org/geospatial/content/central-america. Accessed 15 November 2022

  • Vammen K (2012) Conclusiones del estudio “Calidad y disponibilidad de los recursos hídricos en la subcuenca del río Viejo”; aportes para lograr un estado ambientalmente equilibrado en beneficio a la población [Conclusions of the study “Quality and availability of water resources in the Río Viejo Sub-basin”: contributions to achieve an environmentally balanced state for the benefit of the population]. Universidad y Ciencia 6(9):24–30. https://doi.org/10.5377/uyc.v6i9.1953

  • World Geologists (2010) Integral management of water resources for the supply of drinking water in the municipality of Siguatepeque, Department of Comayagua, Honduras. Final report, 115 pp

  • World Geologists (2014) Improvement and expansion of drinking water and sanitation systems, with community participation, in the peripheral communities of Siguatepeque. Final report, 52 pp

Download references

Acknowledgements

A special recognition goes to UNACIFOR for providing logistics and funding.

Special thanks go to the technical staff of the local water management institution “Aguas de Siguatepeque” for all the support and information provided for the research. Thanks to the team of the Chair of Hydrogeology and Hydrochemistry of TU Bergakademie Freiberg for all their insights and support during the research.

Funding

We would like to make a special recognition to the “Zunker-Busch-Luckner” Foundation, the “Freunde u. Forderer d. TU Bergakademie Freiberg” and the Honduran Presidential Scholarship Program for providing funding for the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Mejia.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Tables used in recharge calculations are presented.

Table 3 Infiltration coefficient components (Modified from Schosinsky and Losilla 2000)
Table 4 Permanent wilting point (PWP) and field capacity (FC) in percent by weight of dry soil of different soil textures (modified from Grassi 1976)
Table 5 Root depth of different crops (modified from Grassi 1976)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mejia, N., Scheytt, T.J. & Murillo, M. Hydrogeological characterization and utilization of the Siguatepeque aquifer, Honduras. Hydrogeol J 32, 557–575 (2024). https://doi.org/10.1007/s10040-023-02718-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-023-02718-2

Keywords

Navigation