Skip to main content

Advertisement

Log in

Geochemical insights into groundwater movement in alpine karst, Bear River Range, Utah, USA

Informations géochimiques sur la circulation des eaux souterraines dans le karst alpin de la chaîne de Bear River, Utah, États-Unis d’Amérique

Conocimiento geoquímico del movimiento de las aguas subterráneas en el karst alpino de la Bear River Range, Utah, EEUU

USA美国Utah州Bear河山脉高山喀斯特地区地下水运动的地球化学认识

Percepções geoquímicas sobre o movimento da água subterrânea no carste alpino da cordilheira do Rio Bear, em Utah, EUA

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Alpine karst aquifers control the availability and longevity of some water resources, but are not well understood. A conceptual model of the alpine karst aquifer system in the Bear River Range of northern Utah (USA) has been developed by geochemical analysis (major ions, δ18O, δ2H and δ13C values) of seasonal water samples from seven perennial springs, and residence-time assessment (3H and CFCs) of two low- and two high-discharge springs. All spring data can be explained by reaction paths dominated by the dissolution of calcian dolomite. The δ13C values align well with reaction paths for open-system dissolution. Saturation indices and low Ca:Mg molar ratios indicate that incongruent dissolution exerts a strong control on water–rock interactions, complicating interpretation of natural solute tracers. Values of δ18O and δ2H in springs follow the Utah meteoric water line. Snow δ18O values correlate with elevation, but not with increasing rainout distance, providing qualitative estimates of recharge elevation that generally align with previous dye-traces to five of the seven springs. Concentrations of 3H and CFCs likely are best described by binary mixing of subannual recharge with 60–65-year-old groundwater, suggesting that the alpine karst aquifer system in the Bear River Range is best represented by a double-porosity model. Subannual recharge documented by dye traces implies that caverns are the primary flowpaths to the springs, but the presence of decadal-age water may indicate that lower permeability flowpaths dominate during baseflow. No evidence was found for a longer-residing flow component, suggesting high sensitivity to future climate variability.

Résumé

Bien que les aquifères karstiques alpins contrôlent la disponibilité et la durabilité de certaines ressources en eau, ils ne sont pas bien compris. Un modèle conceptuel de l’aquifère karstique alpin de la chaîne de Bear River, dans le nord de l’Utah (États-Unis d’Amérique), a été développé grâce à l’analyse géochimique (ions majeurs, teneurs en δ18O, δ2H et δ13C) d’échantillons d’eau saisonniers provenant de sept sources pérennes, et à l’évaluation du temps de résidence (3H et CFC) de deux sources à faible débit et deux à fort débit. Toutes les données des sources peuvent être expliquées par des réactions dominées par la dissolution de la dolomite. Les teneurs en δ13C sont cohérents avec des réactions de dissolution en système ouvert. Les indices de saturation et les faibles rapports molaires Ca:Mg indiquent qu’une dissolution incongruente exerce un contrôle important sur les interactions eau-roche, compliquant ainsi l’interprétation du traçage naturel en phase dissoute. Les valeurs de δ18O et δ2H des sources s’alignent sur la droite météorique locale de l’Utah. Les teneurs en δ18O de la neige sont corrélées avec l’altitude, mais pas avec l’augmentation de la distance de la pluie, fournissant des estimations qualitatives de l’altitude de recharge qui s’alignent généralement sur les traçages artificiels antérieurs de cinq des sept sources. Les teneurs en 3H et CFC sont mieux décrites par un mélange binaire de la recharge infra-annuelle avec des eaux souterraines âgées de 60–65 ans, ce qui suggère qu’un modèle à double porosité permet de mieux représenter le fonctionnement du système aquifère karstique alpin du bassin versant de la rivière Bear. La recharge infra-annuelle, mise en évidence par des traçages artificiels, implique que les conduits souterrains constituent les voies d’écoulement principales jusqu’aux sources, bien que la présence d’eau d’âge décennal puisse indiquer que des trajets de perméabilité inférieure dominent le débit de base. Aucune donnée probante n’atteste d’une composante d’écoulement avec un temps de résidence important, suggérant une sensibilité élevée à la variabilité climatique future.

Resumen

Los acuíferos kársticos alpinos controlan la disponibilidad y la antigüedad de algunos recursos hídricos, pero no se conocen suficientemente. Se ha elaborado un modelo conceptual del sistema acuífero kárstico alpino en Bear River Range, en el norte de Utah (EEUU) mediante análisis geoquímicos (iones principales, valores de δ18O, δ2H y δ13C) de muestras estacionales de agua de siete manantiales perennes, y una evaluación del tiempo de residencia (3H y CFCs) de dos manantiales de baja y dos de alta descarga. Todos los datos de los manantiales pueden explicarse por las líneas de reacción dominadas por la disolución de la dolomita calcárea. Los valores de δ13C se alinean bien con las líneas de reacción para la disolución en sistema abierto. Los índices de saturación y las bajas proporciones molares de Ca:Mg indican que la disolución incongruente ejerce un fuerte control sobre las interacciones agua-roca, lo que complica la interpretación de los trazadores naturales de solutos. Los valores de δ18O y δ2H en los manantiales siguen la línea de aguas meteóricas de Utah. Los valores de δ18O en nieve se correlacionan con la altura, pero no con el aumento de la distancia a la lluvia, lo que proporciona estimaciones cualitativas de la altura de recarga que generalmente se alinean con los trazadores de colorantes de cinco de los siete manantiales. Es probable que las concentraciones de 3H y CFCs se describan mejor mediante la mezcla binaria de la recarga subanual con aguas subterráneas de 60–65 años, lo que sugiere que el sistema acuífero kárstico alpino de la Bear River Range está mejor representado por un modelo de doble porosidad. La recarga subanual documentada por trazadores de colorante implica que las cavernas son las vías de flujo primarias hacia los manantiales, pero la presencia de agua de edad decádica puede indicar que las vías de flujo de menor permeabilidad dominan durante el flujo de base. No se encontraron pruebas de un componente de flujo de mayor duración, lo que sugiere una alta sensibilidad a la futura variabilidad climática.

摘要

高山岩溶含水层控制着水资源的可利用性和使用时间, 但人们对此知之甚少。通过来自七个持续性泉的季节性水样的地球化学分析(主要离子, δ18O, δ2H 和 δ13C值), 以及两个低流量和高流量的泉水(3H 和 CFCs)滞留时间, 开发了Utah北部Bear河山脉(美国)高山喀斯特含水层系统的概念模型。所有泉水数据都可由以钙质白云石溶解为主的反应路径来解释。δ13C值与开放系统溶解的反应路径完全吻合。饱和指数和低的Ca:Mg摩尔比表明, 非均匀溶蚀强烈控制水-岩相互作用, 使天然溶质示踪剂的解释复杂化。泉水的δ18O 和 δ2H值遵循犹他州的降水线。降雪δ18O值与海拔高度相关, 但与增加的降雨距离无关, 从而提供了补给高度的定性估计值, 该估计值通常与七个泉水中五个泉以前的染色剂示踪一致。3H 和 CFCs的浓度可通过将次年补给量与60至65年的地下水进行二元混合来最好地描述, 这表明Bear河山脉的高山喀斯特含水层系统最好用双孔隙度模型来表示。染色剂示踪记录的次年补给表明, 洞穴是通往泉水的主要流路, 但年代际水的存在表明在基流期间渗透率较低的流路占主导地位。没有证据表明更长的流动组分, 说明对未来的气候变化高度敏感。

Resumo

Aquíferos cársticos alpinos controlam a disponibilidade e longevidade de alguns recursos hídricos, mas não são bem compreendidos. Um modelo conceitual do sistema aquífero cárstico alpino na cordilheira do Rio Bear do norte de Utah (EUA) tem sido desenvolvido por analises geoquímicas (íons principais, δ18O, δ2H e δ13C) de amostras sazonais de águas de sete nascentes perenes, e análise do tempo de residência (3H e CFCs) de duas nascentes de baixa vazão e duas de alta vazão. Todos os dados das nascentes podem ser explicados por caminho de reação dominados por dissolução de calcário dolomitico. Os valores δ13C se alinham bem com o caminho de reação para sistemas abertos de dissolução. Índices de saturação e baixa razão molar Ca:Mg indica que a dissolução incongruente exerce um forte controle na interação água -rocha, complicando a interpretação dos traçadores naturais de soluto. Valores de δ18O e δ2H nas nascentes seguem a linha meteórica de Utah. Valores de δ18O da neve se correlacionam com a elevação, mas não com o aumento da distância da chuva, fornecendo estimativas qualitativas da elevação de recarga que geralmente se alinham com os traços de corantes anteriores de cinco das sete nascentes. Concentrações de 3H e CFCs provavelmente são melhores descritas pela mistura binária de recarga subanual com águas subterrâneas de 60–65 anos de idade, sugerindo que o sistema aquífero cárstico na cordilheira do Rio Bear é melhor representado por um modelo de dupla porosidade. A recarga subanual documentada por traçadores de corante indicam que cavernas são os caminhos de fluxo primários para as nascentes, mas a presença de água com idade decadal pode indicar que fluxos de baixa permeabilidade dominam o fluxo de base. Nenhuma evidencia encontrada para um componente de fluxo de longa duração, sugerindo alta sensibilidade para variabilidade climática futura.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abbott MD, Lini A, Bierman PR (2000) δ18O, δD, and 3H measurements constrain groundwater recharge patterns in an upland fractured bedrock aquifer, Vermont, USA. J Hydrol 228:101–112

    Article  Google Scholar 

  • Bahr K (2016) Structural and lithological influences on the Tony Grove alpine karst system, Bear River range, north-central Utah. MSc Thesis, Utah State University, Logan, UT, 212 pp

  • Berthoux PM, Brown LC (2002) Statistics for environmental engineers. CRC, Boca Raton, FL, 512 pp

  • Bischoff WD (1998) Dissolution enthalpies of magnesian calcites. Aquat Geochem 4:321–336

    Article  Google Scholar 

  • Bjorklund LJ, McGreevy LJ (1971) Groundwater resources of Cache Valley, Utah and Idaho. Technical Publication 36, Utah Department of Natural Resources, Salt Lake City, 72 pp

  • Blasch KW, Bryson JR (2007) Distinguishing sources of ground water recharge by using δ2H and δ18O. Ground Water 45(3):294–308

    Article  Google Scholar 

  • Bowen G (2017) water isotopes database. http://waterisotopes.org. Accessed October 2018

  • Bright J (2009) Isotope and major-ion chemistry of groundwater in bear Lake Valley, Utah and Idaho, with emphasis on the Bear River range. In: Rosenbaum JG, Kaufman DS (eds) Paleoenvironments of Bear Lake, Utah and Idaho, and its catchment. Geol Soc Am Spec Pap 450:105–132

    Google Scholar 

  • Brooks JR, Wiginton PJ, Phillips DL, Comeleo R, Coulombe R (2012) Willamette River basin surface water isoscape (δ18O and δ 2H): temporal changes of source water within the river. Ecosphere 3(5):1–39

    Article  Google Scholar 

  • Busenberg E, Plummer LN (1992) Use of chlorofluorocarbons (CCl3F and CCL2F2) as hydrologic tracers and age-dating tools: the alluvium and terrace system of central Oklahoma. Water Resour Res 28(9):2257–2283

    Article  Google Scholar 

  • Busenberg E, Plummer LN, Cook PG, Solomon DK, Han LF, Groning M, Oster H (2006) Sampling and analytical methods. In: Use of chlorofluorocarbons in hydrology: a guidebook. International Atomic Energy Agency, Vienna, pp 199–220

  • Cerling TE, Solomon DK, Quade JA, Bowman JR (1991) On the isotopic composition of carbon in soil carbon dioxide. Geochim Cosmochim Acta 55:3403–3405

    Article  Google Scholar 

  • Chen Z, Goldscheider N (2014) Modeling spatially and temporally varied hydraulic behavior of a folded karst system with dominant conduit drainage at catchment scale, Hochifen-Gottesacker, Alps. J Hydrol 514:41–52

    Article  Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133(3465):1702–1703

    Article  Google Scholar 

  • Davis CR (2017) Sequence stratigraphy, chemostratigraphy, and biostratigraphy of lower Ordovician units in northeastern and western Central Utah: regional implications. MSc Thesis, Utah State University, Logan, UT, 244 pp

  • Dover JH (1995) Geologic map of the Logan 30′ × 60′ quadrangle, Cache and Rich counties, Utah, and Lincoln and Uinta counties, Wyoming 1:100,000. Utah Geological Survey Miscell Publ MP06–8 DM, Utah Geological Survey, Salt Lake City, UT

  • Earman S, Campbell AR, Phillips FM, Newman BD (2006) Isotopic exchange between snow and atmospheric water vapor: estimation of the snowmelt component of groundwater recharge in the southwestern united state. J Geophys Res 111:1–18

  • Evans JP, Oaks RQ Jr (1996) Three-dimensional variations in extensional fault shape and basin form: the Cache Valley basin, eastern basin and range province, United States. Geol Soc Am Bull 108:1580–1593

    Article  Google Scholar 

  • Evans JP, McCalpin JP, Holmes DC (1996) Geologic map of the Logan quadrangle, Cache County, Utah 1:24,000. Utah Geological Survey Map 96–1, Utah Geological Survey, Salt Lake City, UT

  • Even H, Carmi I, Magaritz M, Gerson R (1986) Timing the transport of water through the upper vadose zone in a karstic system above a cave in Israel. Earth Surf Process Landf 11(2):181–191

    Article  Google Scholar 

  • Filippini M, Squarzoni G, De Waele J, Fiorucci A, Vigna B, Grillo B, Riva A, Rossetti S, Zini L, Casagrande G, Stumpp C, Gargini A (2018) Differentiated spring behavior under changing hydrological conditions in an alpine karst aquifer. J Hydrol 556:572–584

    Article  Google Scholar 

  • Ford DC (1983) Effects of glaciations upon karst aquifers in Canada. J Hydrol 61:149–158

    Article  Google Scholar 

  • Ford D, Williams PD (2007) Karst hydrogeology and geomorphology. Wiley, West Sussex, England, 576 pp

    Book  Google Scholar 

  • Francis GG (1972) Stratigraphy and environmental analysis of the swan peak formation and Eureka quartzite, northern Utah. MSc Thesis, Utah State University, Logan, UT, 125 pp

  • Frondini F, Zucchini A, Comodi P (2014) Water–rock interactions and trace element distribution in dolomite aquifers: the Sassolungo and Sella systems (northern Italy). Geochem J 48:231–246

    Article  Google Scholar 

  • Goldscheider N, Neukum C (2010) Fold and fault control on the drainage pattern of a double-karst-aquifer system, Winterstaude, Austrian Alps. Acta Carsol 39(2):173–186

    Google Scholar 

  • Gooseff MN, Evans JP, Kolesar P, Lachmar TE, Payn R (2005) Hydrologic contributions of springs to the Logan River, Utah. Abstract H51C-02, AGU Spring Meeting, New Orleans, LA, May 2005

  • Gremaud V, Goldscheider N, Savoy L, Favre S, Masson H (2009) Geological structure, recharge processes and underground drainage of a glacierised karst aquifer system, Tsanfleuron-Sanetsch, Swiss Alps. Hydrogeol J 17:1833–1848

    Article  Google Scholar 

  • International Atomic Energy Agency (IAEA) (2014) Global network of isotopes in precipitation, the GNIP database. http://www.iaes.org/water. Accessed August 2017

  • James ER, Manga M, Rose TP, Hudston GB (2000) The use of temperature and the isotopes of O, H, C, and noble gases to determine the pattern and spatial extent of groundwater flow. J Hydrol 237:100–112

    Article  Google Scholar 

  • Jurgens BC, Bohlke JK, Eberts SM (2012) TracerLPM (version 1): an Excel® workbook for interpreting groundwater age distributions from environmental tracer data. US Geol Surv Tech Methods Rep 4-F3, 60 pp

  • Kaliser BN (1972) Environmental geology of Bear Lake area, Rich County, Utah. Utah Geol Mineral Surv Bull 96, 32 pp

  • Katz BG, Sepulveda AA, Verdi RJ (2009) Estimating nitrogen loading to ground water and assessing vulnerability to nitrate contamination in a large karstic springs basin, Florida. J Am Water Resour Assoc 45(3):607–627

    Article  Google Scholar 

  • Kendall C, Coplen TB (2001) Distribution of oxygen-18 and deuterium in river waters across the United States. Hydrol Process 15:1363–1393

    Article  Google Scholar 

  • Kendall C, Doctor DH (2003) Stable isotope applications in hydrologic studies. In: Drever J (ed) Treatise on geochemistry, vol 5. Elsevier, Amsterdam, The Netherlands, pp 319–364

    Chapter  Google Scholar 

  • Kolesar PT, Evans JP, Gooseff MN, Lachmar TE, Payn R (2005) A tale of two (or more) karsts, Bear River Range, Cache National Forest. Utah Geol Soc Am Abstr Programs 37(7):177

    Google Scholar 

  • Langmuir D (1971) Geochemistry of some carbonate ground waters in central Pennsylvania. Geochim Cosmochim Acta 35(10):1023–1045

    Article  Google Scholar 

  • Lauber U, Goldscheider N (2014) Use of artificial and natural tracers to assess groundwater transit-time distribution and flow systems in a high-alpine karst system (Wetterstein Mountains, Germany). Hydrogeol J 22:1807–1824

    Article  Google Scholar 

  • Long AJ, Putnam LD (2009) Age-distribution estimation for karst groundwater: issues of parameterization and complexity in inverse modeling by convolution. J Hydrol 376:579–588

    Article  Google Scholar 

  • McCalpin JP (1989) Surficial geologic map of the East Cache fault zone, Cache County, Utah 1:50,000. US Geol Surv Miscell Field Studies Map MF-2107

  • McCalpin JP (1994) Neotectonic deformation along the east cache fault zone, Cache County, Utah. Utah Geol Surv Spec Study 83, 37 pp

  • Michel RL (1989) Tritium deposition in the continental United States, 1953-83. US Geol Surv Water Resour Invest Rep 89-4072, 46 pp

  • Mook W (2001) Environmental isotopes in the hydrological: introduction—theory, methods, review. Tech Doc Hydrol vol 1, 39. UNESCO/Int Atomic Energy Agency, Paris, 164 pp

  • Moral F, Cruz-Sanjulian JJ, Olias M (2008) Geochemical evolution of groundwater in the carbonate aquifers of Sierra de Segura (Betic Cordillera, southern Spain). J Hydrol 360:281–296

    Article  Google Scholar 

  • Mundorff JC (1971) Nonthermal springs of Utah. Utah Geol Mineral Surv Water Resour Bull 16, 70 pp

  • Neilson BT, Tennant H, Stout TL, Miller MP, Gabor RS, Jameel Y, Millington M, Gelderloow A, Bowen GJ, Brooks PD (2018) Stream centric methods for determining groundwater contributions in karst mountain watersheds. Water Resour Res 54(9):6708–6724

    Article  Google Scholar 

  • Niwot Ridge LTER (2018) Niwot Ridge LTER long-term ecological research dataset. http://niwot.colorado.edu/data. Accessed January 2018

  • Ozyurt NN (2008) Residence time distribution in the Kirkgoz karst springs (Anntalya-Turkey) as a tool for contamination vulnerability assessment. Environ Geol 53:1571–1583

    Article  Google Scholar 

  • Parkhurst DL, Appelo CA (2013) Description of input and examples for PHREEQC version 3: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geol Surv Tech Methods, Book 6, chapter A43, US Geological Survey, Reston, VA, 497 pp

  • Plummer LN, Busenberg E, Cook PG (2006) Principles of chlorofluorocarbon dating. In: Groning M, Han LF, Aggarwal P (eds) Use of chlorofluorocarbons in hydrology: a guidebook. International Atomic Energy Agency, Vienna, pp 17–29

  • Poage MA, Chamberlain CP (2001) Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: considerations for studies of paleoelevation change. Am J Sci 301:1–15

    Article  Google Scholar 

  • Robinson JM (1999) Chemical and hydrostratigraphic characterization of ground water and surface water interaction in Cache Valley, Utah. MSc Thesis, Utah State University, Logan, UT, 184 pp

  • Savio D, Stadler P, Reischer GH, Demeter K, Linke RB, Blaschke AP, Mach RL, Kirschner AKT, Stadler H, Farnleitner AH (2019) Spring water of an alpine karst aquifer is dominated by a taxonomically stable but discharge-responsive bacterial community. Frontiers Microbiol. https://doi.org/10.3389/fmicb.2019.00028

  • Sharp Z (2007) Stable sotope geochemistry. Pearson prentice hall. Upper Saddle River, New Jersey, p 344

  • Solder JE, Stolp BJ, Heilweil VM, Susong DD (2016) Characterization of mean transit time at large springs in the upper Colorado River basin, USA: a tool for assessing groundwater discharge variability. Hydrogeol J 24(8):2017–2033

  • Solomon DK (2017) University of Utah dissolved and noble gas lab tritium collection guide. http://www.noblegaslab.utah.edu/pdfs/tritium_collection.pdf. Accessed May 2017

  • Smart CC (1983) The hydrology of the Castleguard Karst, Columbia Icefields, Alberta, Canada. Arct Alp Res 15(4):471–486

    Article  Google Scholar 

  • Smart CC (1988) Artificial tracer techniques for the determination of the structure of conduit aquifers. Ground Water 26(4):445–453

    Article  Google Scholar 

  • Spangler LE (2001) Delineation of recharge areas for karst springs in Logan canyon, Bear River Range, northern Utah. US Geol Surv Water Resour Invest Rep 01-4011:186–193

    Google Scholar 

  • Spangler LE (2002) Use of dye tracing to determine conduit flow paths within source-protection areas of a karst spring and wells in the Bear River Range, northern Utah. US Geol Surv Water Resour Invest Rep 2-4174. 6 pp

  • Spangler LE (2012) Karst hydrogeology of the Bear River Range in the vicinity of Logan canyon, northern Utah, Uinta-Wasatch-Cache National Forest. Beneath For 5(1):12–20

    Google Scholar 

  • USDA (2018) Snow telemetry (SNOTEL) and snow course data and products. US Department of Agriculture, Natural Resources Conservation Service. https://www.wcc.nrcs.usda.gov/snow/. Accessed January 2018

  • USGS GDL (2017) Tracer input functions. US Geological Survey Groundwater Dating Laboratory, Reston, VA. http://water.usgs.gov/lab/software/air_curve/. Accessed November 2017

  • Vogel JC, Grootes PM, Mook WG (1970) Isotopic fractionation between gaseous and dissolved carbon dioxide. Zeitschrift Physik 230(3):225–238

    Article  Google Scholar 

  • White WB (2003) Conceptual models for karstic aquifers. Speleogenesis Evol Karst Aquifers 1(1):11–16

    Google Scholar 

  • Wigley TM (1972) The incongruent solution of dolomite. Geochim Cosmochim Acta 37:1397–1402

    Article  Google Scholar 

  • Wilde FD (2008) Guidelines for field-measured water-quality properties (ver. 2.0). US Geological Survey Techniques of Water-Resources Investigations, book 9, chapter A6, section 6.0, USGS, Reston, VA, pp 3–29

  • Williams EL, Szramek KJ, Jin L, Ku TC, Walter LM (2007) The carbonate system geochemistry of shallow groundwater-surface water systems in temperate glaciated watersheds (Michigan, USA): significance of open-system dolomite weathering. Geol Soc Am Bull 119(516):515–528

    Article  Google Scholar 

  • Williams JS (1948) Geology of the Paleozoic rocks, Logan quadrangle, Utah. Geol Soc Am Bull 59:1121–1184

    Article  Google Scholar 

  • Williams JS (1958) Geologic atlas of Utah, Cache County Utah Geol Mineral Survey Bull 64, 98 pp

  • Zeng C, Gremaud V, Zeng H, Liu Z, Goldscheider N (2012) Temperature-driven meltwater production and hydrochemical variations at a glaciated alpine karst aquifer: implication for the atmospheric CO2 sink under global warming. Environ Earth Sci 65:2285–2297

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank reviewers Brad Esser and Stephane Binet, as well as associate editor Hervé Jourde and editor Prof. Rui Ma, whose insights and suggestions greatly improved the final version of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Lachmar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lachmar, T., Sorsby, S. & Newell, D. Geochemical insights into groundwater movement in alpine karst, Bear River Range, Utah, USA. Hydrogeol J 29, 687–701 (2021). https://doi.org/10.1007/s10040-020-02256-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-020-02256-1

Keywords

Navigation