Skip to main content

Advertisement

Log in

Coupled cryo-hydrogeological modelling of permafrost dynamics near Umiujaq (Nunavik, Canada)

Modélisation cryo-hydrogéologique couplée de la dynamique du pergélisol près de Umiujaq, Nunavik (Canada)

Modelización criohidrogeológica acoplada en la dinámica del permafrost cercano a Umiujaq (Nunavik, Canadá)

Umiujaq(加拿大努纳维克)附近多年冻土动力过程的冷冻水文地质耦合模型

Modelagem crio-hidrogeológica acoplada da dinâmica do pergelissolo perto de Umiujaq (Nunavik, Canadá)

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

A two-dimensional (2D) cryo-hydrogeological numerical model of groundwater flow, coupled with advective-conductive heat transport with phase change, has been developed to study permafrost dynamics around an ice-rich permafrost mound in the Tasiapik Valley near Umiujaq, Nunavik (Québec), Canada. Permafrost is degrading in this valley due to climate warming observed in Nunavik over the last two decades. Ground temperatures measured along thermistor cables in the permafrost mound show that permafrost thaw is occurring both at the permafrost table and base, and that heat fluxes at the permafrost base are up to ten times higher than the expected geothermal heat flux. Based on a vertical cross-section extracted from a 3D geological model of the valley, the numerical model was first calibrated using observed temperatures and heat fluxes. Comparing simulations with and without groundwater flow, advective heat transport due to groundwater flow in the subpermafrost aquifer is shown to play a critical role in permafrost dynamics and can explain the high apparent heat flux at the permafrost base. Advective heat transport leads to warmer subsurface temperatures in the recharge area, while the cooled groundwater arriving in the downgradient discharge zone maintains cooler temperatures than those resulting from thermal conduction alone. Predictive simulations incorporating a regional climate-change scenario suggest the active layer thickness will increase over the coming decades by about 12 cm/year, while the depth to the permafrost base will decrease by about 80 cm/year. Permafrost within the valley is predicted to completely thaw by around 2040.

Résumé

Un modèle numérique cryo-hydrogéologique bidimensionnel (2D) de l’écoulement de l’eau souterraine, couplé avec un transfert de chaleur advectif-convectif à changement de phase, a été développé pour étudier la dynamique du pergélisol autour d’un monticule fortement gelé dans la Vallée de Tasiapik près de Umiujaq, Nunavik, Québec (Canada). Le pergélisol se dégrade dans cette vallée du fait du réchauffement climatique observé à Nunavik au cours des deux dernières décennies. Les températures du sol mesurées sur des câbles de thermistance au sein du monticule de pergélisol montrent que la fonte de ce dernier se produit à la fois à sa surface et à sa base et que les flux de chaleur de la base sont jusqu’à 10 fois supérieurs au flux de chaleur géothermique attendu. Sur la base d’une coupe verticale extraite d’un modèle géologique 3D de la vallée, le modèle numérique a d’abord été calé sur les températures et les flux de chaleur observés. En comparant les simulations avec et sans écoulement d’eau souterraine, on montre que le transfert de chaleur advectif lié à l’écoulement de l’eau souterraine dans l’aquifère sous le pergélisol joue un rôle crucial dans la dynamique du pergélisol et peut expliquer le flux de chaleur élevé constaté à sa base. Le transfert de chaleur advectif conduit à des températures de subsurface plus chaudes dans la zone de recharge tandis que l’arrivée d’une eau souterraine froide dans la zone de décharge aval assure le maintien des températures plus froides que celles résultant de la conduction thermique seule. Des simulations prédictives intégrant un scénario de changement climatique régional suggèrent que l’épaisseur de la couche active s’accroîtra durant les décennies à venir d’environ 12 cm/an, tandis que la profondeur de la base du pergélisol diminuera.

Resumen

Se ha desarrollado un modelo numérico bidimensional (2D) criohidrogeológico del flujo de agua subterránea, junto con el transporte de calor advectivo-conductivo con cambio de fase, para estudiar la dinámica del permafrost alrededor de un montículo de permafrost rico en hielo en el valle de Tasiapik, cerca de Umiujaq, Nunavik (Québec), Canadá. El permafrost se está degradando en este valle debido al calentamiento climático observado en Nunavik en las últimas dos décadas. Las temperaturas del suelo medidas a lo largo de los cables del termistor en el montículo del permafrost muestran que el deshielo del permafrost está ocurriendo tanto en la capa como en la base del permafrost, y que los flujos de calor en la base del permafrost son hasta diez veces más altos que el flujo de calor geotérmico esperado. Basado en una sección transversal vertical extraída de un modelo geológico 3D del valle, el modelo numérico fue calibrado primero utilizando temperaturas observadas y flujos de calor. Comparando simulaciones con y sin flujo de agua subterránea, se ha demostrado que el transporte de calor advectivo debido al flujo de agua subterránea en el acuífero del subpermafrost juega un papel crítico en la dinámica del permafrost y puede explicar el alto flujo de calor aparente en su base. El transporte conveniente de calor conduce a temperaturas subterráneas más cálidas en el área de recarga, mientras que el agua subterránea más fría que llega a la zona de descarga con pendiente descendente mantiene temperaturas más frías que las que resultan de la conducción térmica sola. Las simulaciones predictivas que incorporan un escenario regional de cambio climático sugieren que el espesor de la capa activa aumentará en las próximas décadas en unos 12 cm/año, mientras que la profundidad hasta la base del permafrost disminuirá en unos 80 cm/año. Se predice que el permafrost dentro del valle se descongelará completamente hacia 2040.

摘要

开发了二维(2D)地下水流动的低温水文地质数值模型, 并考虑了相变的对流传导热传输,以研究加拿大魁北克省努纳维克Umiujaq附近Tasiapik峡谷中富含冰的多年冻土丘周围的多年冻土动力过程。由于过去二十年来在努纳维克观察到的气候变暖,该峡谷的多年冻土正在退化。沿永久冻土丘中的热敏电缆测量的地面温度表明,永久冻土台和底部都发生了永久冻土融化,并且永久冻土底部的热通量比预期的地热通量高出十倍。利用峡谷3D地质模型中提取的垂直剖面,使用观察到的温度和热通量首先对数值模型进行识别。考虑有无地下水流的比较模拟果表明,由于多年冻土层中地下水流动而产生的对流热传递在多年冻土动力过程中起着至关重要的作用,还可以解释多年冻土底部高表层热通量的原因。对流热传输导致补给区的地下温度升高,而到达下坡排泄区的冷地下水有着比仅由热传导导致的温度更低的温度。结合区域气候变化情景的预测模拟表明,在未来几十年中,活动层厚度将增加约12 cm/year,而到永久冻土底部的深度将减少约80 cm/year。预计到2040年左右,峡谷中的永久冻土将完全融化。

Resumo

Um modelo numérico crio-hidrogeológico bidimensional (2D) crio-hidrogeológico, juntamente com transporte de calor condutor-advetivo com mudança de fase, foi desenvolvido para estudar a dinâmica do pergelissolo em torno de um monte de pergelissolo rico em gelo no vale Tasiapik perto de Umiujaq, Nunavik (Quebec), Canadá. O pergelissolo está se degradando neste vale devido ao aquecimento climático observado em Nunavik nas últimas duas décadas. As temperaturas do solo medidas ao longo dos cabos do termistor no monte de pergelissolo mostram que o degelo do pergelissolo está ocorrendo no topo e na base de pergelissolo e que os fluxos de calor na base do pergelissolo são até dez vezes mais altos que o fluxo de calor geotérmico esperado. Com base em uma seção transversal vertical extraída de um modelo geológico 3D do vale, o modelo numérico foi primeiro calibrado usando temperaturas e fluxos de calor observados. Comparando simulações com e sem fluxo de águas subterrâneas, é mostrado que o transporte de calor devido ao fluxo de água subterrânea no aquífero subpergelissolo desempenha um papel crítico na dinâmica do pergelissolo e pode explicar o alto fluxo de calor aparente na base do pergelissolo. O transporte de calor advectivo leva à temperaturas mais baixas do subsolo na área de recarga, enquanto as águas subterrâneas resfriadas que chegam à zona de descarga de nível inferior mantêm temperaturas mais baixas do que aquelas resultantes apenas da condução térmica. Simulações preditivas incorporando um cenário regional de mudança climática sugerem que a espessura da camada ativa aumentará nas próximas décadas em cerca de 12 cm/ano, enquanto a profundidade da base do pergelissolo diminuirá em cerca de 80 cm/ano. Prevê-se que o pergelissolo no vale descongele completamente por volta de 2040.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Albers BMC, Molson JW, Bense VF (2020) Parameter sensitivity analysis of a two-dimensional cryo-hydrogeological numerical model of degrading permafrost near Umiujaq (Nunavik, Canada). Hydrogeol J. https://doi.org/10.1007/s10040-020-02112-2

  • Allard M, Lemay M (2012) Nunavik and Nunatsiavut: from science to policy—an integrated regional impact study (IRIS) of climate change and modernization. ArcticNet, Quebec City, Canada, 303 pp

  • Allard M, Seguin M-K (1987) The Holocene evolution of permafrost near the tree line, on the eastern coast of Hudson Bay (northern Quebec). Can J Earth Sci 24:2206–2222

    Article  Google Scholar 

  • Allard M, Fortier R, Duguay C, Barrette N (2002) A trend of fast climate warming in northern Quebec since 1993: impacts on permafrost and man-made infrastructures. Fall Meeting, American Geophysical Union, San Francisco

    Google Scholar 

  • AMAP (2017) Snow, water, ice and permafrost in the Arctic (SWIPA). Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway. 269 pp

  • Atchley AL, Coon ET, Painter SL, Harp DR, Wilson CJ (2016) Influences and interactions of inundation, peat, and snow on active layer thickness. Geophys Res Lett 43. https://doi.org/10.1002/2016GL068550

  • Banville D-R (2016) Modélisation cryohydrogéologique tridimensionnelle d’un bassin versant pergélisolé: une étude cryohydrogéophysique de proche surface en zone de pergélisol discontinu à Umiujaq au Québec Nordique [Three-dimensional cryo-hydrogeological modeling of a permafrosted watershed: a near-surface cryo-hydrogeophysical study in a discontinuous permafrost zone in Umiujaq, northern Québec]. MSc Thesis, Université Laval, Quebec City, QC, 278 pp

  • Bense VF, Kooi H, Ferguson G, Read T (2012) Permafrost degradation as a control on hydrogeological regime shifts in a warming climate. J Geophys Res Earth Surf 117. https://doi.org/10.1029/2011JF002143

  • Buteau S, Fortier R, Delisle G, Allard M (2004) Numerical simulation of the impacts of climate warming on a permafrost mound. Permafr Periglac Process 15:41–57

    Article  Google Scholar 

  • Byers HR, Moses H, Harney PJ (1949) Measurement of rain temperature. J Meteorol 6:51–55

    Article  Google Scholar 

  • Caya D, Laprise R, Giguère M, Bergeron G, Blanchet JP, Stocks BJ, Boer GJ, McFarlane NA (1995) Description of the Canadian regional climate model. Water Air Soil Pol 82:477–482

    Article  Google Scholar 

  • Caya D, Laprise R (1999) A semi-implicit semi-Lagrangian regional climate model: the Canadian RCM. Monthly Weather Rev 127:341–362. https://doi.org/10.1175/1520-0493(1999)127<0341:ASISLR>2.0.CO;2

    Article  Google Scholar 

  • Cochand M, Molson J, Barth JA-C, van Geldern R, Lemieux J-M, Fortier R, Therrien R (2020) Rapid groundwater recharge dynamics determined from hydrogeochemical and isotope data in a small permafrost watershed near Umiujaq (Nunavik, Canada). Hydrogeol J. https://doi.org/10.1007/s10040-020-02109-x

  • Chen W, Zhang Y, Cihlar J, Smith SL, Riseborough DW (2003) Changes in soil temperature and active layer thickness during the twentieth century in a region in western Canada. J Geophys Res 108(D22):4696. https://doi.org/10.1029/2002JD003355

    Article  Google Scholar 

  • Chouinard C, Fortier R, Mareschal JC (2007) Recent climate variations in the subarctic inferred from three borehole temperature profiles in northern Quebec, Canada. Earth Planet Sci Lett 263:355–369. https://doi.org/10.1016/j.epsl.2007.09.017

    Article  Google Scholar 

  • Dagenais S (2018) Coupled cryo-hydrogeological modelling of permafrost dynamics at Umiujaq, Québec, Canada. MSc Thesis, Université Laval, Quebec City, QC

  • de Grandpré I, Fortier D, Stephani E (2012) Degradation of permafrost beneath a road embankment enhanced by heat advected in groundwater. Can J Earth Sci 49(8):953–962

    Article  Google Scholar 

  • Doherty J (2016) Model-independent parameter estimation user manual, part I: PEST, SENSAN and Global Optimisers. Watermark, Brisbane, Australia, 390 pp

  • Domenico P, Schwartz F (1998) Physical and chemical hydrogeology, 2nd edn. Wiley, 528 pp. https://doi.org/10.1002/1099-1034(200004/06)35:23.0.CO;2-S. Accessed January 2020

  • Evans SG, Ge S (2017) Contrasting hydrogeologic responses to warming in permafrost and seasonally frozen ground hillslopes. Geophys Res Lett 44. https://doi.org/10.1002/2016GL072009

  • Fortier R, Lemieux J-M, Talbot Poulin M-C, Banville D, Lévesque R, Molson J, Therrien R (2014) Hydrogéologie d’un bassin versant dans une vallée près d’Umiujaq, Rapport de la phase IIIb du projet de déploiement du réseau Immatsiak remis au MDDEFP [Hydrogeology of a watershed in a valley near Umiujaq, Phase IIIb report of the Immatsiak network deployment project]. MDDEFP, Quebec City, QWC, 259 pp

  • Fortier, R, D-R Banville, R Lévesque, J-M Lemieux, J Molson, R Therrien, M Ouellet (2020) Development of a three-dimensional geological model, based on Quaternary chronology, geological mapping, and geophysical investigation, of a watershed in the discontinuous permafrost zone near Umiujaq (Nunavik, Canada). Hydrogeol J. https://doi.org/10.1007/s10040-020-02113-1

  • Frampton A, Painter SL, Destouni G (2013) Permafrost degradation and subsurface flow changes caused by surface warming trends. Hydrogeol J 21(1):271–280

    Article  Google Scholar 

  • Frederick JM, Buffett BA (2015) Effects of submarine groundwater discharge on the present-day extent of relict submarine permafrost and gas hydrate stability on the Beaufort Sea continental shelf. J Geophys Res Earth Surf 120:417–432. https://doi.org/10.1002/2014JF003349

    Article  Google Scholar 

  • Ghanbarian B, Daigle H (2016) Thermal conductivity in porous media: Percolation-based effective-medium approximation. Water Resour Res 52, 295–314. https://doi.org/10.1002/2015WR017236

  • Grenier C, Anbergen H, Bense V, Chanzy Q, Coon E, Collier N, Costard F, Ferry M, Frampton A, Frederick J, Holmen J, Jost A, Kokh S, Kurylyk B, McKenzie J, Molson J, Mouche E, Orgogozo L, Pannetier R, Rivière A, Roux N, Rühaak W, Scheidegger J, Selroos J-O, Therrien R, Vidstrand P, Voss C (2018) Groundwater flow and heat transport for systems undergoing freeze-thaw: intercomparison of numerical simulators for 2D test cases. Adv Water Resour 114:196–218. https://doi.org/10.1016/j.advwatres.2018.02.001

    Article  Google Scholar 

  • IPCC (2007) Contribution of Working Groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change Core Writing Team. IPCC, Geneva, Switzerland

  • IPCC (2013) The physical science basis: contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 1535 pp

  • Ireson AM, van der Kamp G, Ferguson G, Nachshon U, Wheateret HS (2013) Hydrogeological processes in seasonally frozen northern latitudes: understanding, gaps and challenges. Hydrogeol J 21(1):53–66. https://doi.org/10.1007/s10040-012-0916-5

    Article  Google Scholar 

  • Jafarov EE, Coon ET, Harp DR, Wilson CJ, Painter SL, Atchley AL, Romanovsky VE (2018) Modeling the role of preferential snow accumulation in through talik development and hillslope groundwater flow in a transitional permafrost landscape. Environ Res Lett 13:105006. https://doi.org/10.1088/1748-9326/aadd30

    Article  Google Scholar 

  • Jamin P, Cochand M, Dagenais S, Lemieux J-M, Fortier R, Molson J, Brouyère S (2020) Direct measurement of groundwater flux in aquifers within the discontinuous permafrost zone: an application of the finite volume point dilution method near Umiujaq (Nunavik, Canada). Hydrogeol J. https://doi.org/10.1007/s10040-020-02108-y

  • Jiang Y, Zhuang Q, O’Donnell JA (2012) Modeling thermal dynamics of active layer soils and near-surface permafrost using a fully coupled water and heat transport model. J Geophys Res 117:D11110. https://doi.org/10.1029/2012JD017512

    Article  Google Scholar 

  • Karra S, Painter SL, Lichtner PC (2014) Three-phase numerical model for subsurface hydrology in permafrost-affected regions. Cryosphere Discuss 8:149–185

    Article  Google Scholar 

  • Kurylyk BL, MacQuarrie KTB, McKenzie JM (2014a) Climate change impacts on groundwater and soil temperatures in cold and temperate regions: implications, mathematical theory, and emerging simulation tools. Earth-Sci Rev 138:313–334. https://doi.org/10.1016/j.earscirev.2014.06.006

    Article  Google Scholar 

  • Kurylyk BL, MacQuarrie KTB, Voss CI (2014b) Climate change impacts on the temperature and magnitude of groundwater discharge from shallow, unconfined aquifers. Water Resour Res 50:3253–3274

    Article  Google Scholar 

  • Kurylyk BL, Hayashi M, Quinton WL, McKenzie JM, Voss CI (2016) Influence of vertical and lateral heat transfer on permafrost thaw, peatland landscape transition, and groundwater flow. Water Resour Res 52:1286–1305. https://doi.org/10.1002/2015WR018057

    Article  Google Scholar 

  • Lackner G, Nadeau D, Dominé F, Anctil F, Parent A-C, Lemieux J-M, Fortier R (2017) Analysis of water and energy budgets in a subarctic experiment watershed in northern Quebec, Canada. In: Proceedings of Arctic Change 2017, Quebec City, December 11–15 2017

  • Lemieux J-M, Fortier R, Talbot-Poulin M-C, Molson J, Therrien R, Ouellet M, Banville D, Cochand M, Murray R (2016) Groundwater occurrence in cold environments: examples from Nunavik, Canada. Hydrogeol J 24(6):1497–1513. https://doi.org/10.1007/s10040-016-1411-1

    Article  Google Scholar 

  • Lemieux J-M, Fortier R, Murray R, Dagenais S, Cochand M, Delottier H, Therrien R, Molson J, Pryet A, Parhizkar M (2020) Groundwater dynamics within a watershed in the discontinuous permafrost zone near Umiujaq (Nunavik, Canada). Hydrogeol J. https://doi.org/10.1007/s10040-020-02110-4

  • Luckner L, Schestakow WM (1991) Migration processes in the soil and groundwater zone. Verlag für Grundstoffindustrie, Leipzig, Germany

  • Lunardini VJ (1985) Freezing of soil with phase change occurring over a finite temperature difference. In: 4th International Offshore Mechanics and Arctic Engineering Symposium, ASM, Washington, DC

  • Mareschal J-C, Jaupart C (2004) Variations of surface heat flow and lithospheric thermal structure beneath the North American Craton. Earth Planet Sci Lett 223(1–2):65–77. https://doi.org/10.1016/j.epsl.2004.04.002

    Article  Google Scholar 

  • McKenzie JM, Voss CI, Siegel DI (2007) Groundwater flow with energy transport and water–ice phase change: numerical simulations, benchmarks, and application to freezing in peat bogs. Adv Water Resour 30(4):966–983

    Article  Google Scholar 

  • McKenzie JM, Voss CI (2013) Permafrost thaw in a nested groundwater-flow system. Hydrogeol J 21:299–316. https://doi.org/10.1007/s10040-012-0942-3

    Article  Google Scholar 

  • McClymont AF, Hayashi M, Bentley LR, Christensen BS (2013) Geophysical imaging and thermal modeling of subsurface morphology and thaw evolution of discontinuous permafrost. J Geophys Res-Earth Surf 118(3):1826–1837. https://doi.org/10.1002/jgrf.20114

    Article  Google Scholar 

  • Menberg K, Blum P, Kurylyk BL, Bayer P (2014) Observed groundwater temperature response to recent climate change. Hydrol Earth Syst Sci Discuss 11:3637–3673. https://doi.org/10.5194/hessd-11-3637-2014

    Article  Google Scholar 

  • Molson JW, Frind EO (2018) HEATFLOW-SMOKER: density-dependent flow and advective-dispersive transport of thermal energy, mass or residence time: user guide. Univ. Laval, Quebec City, 116 pp

  • Molson JW, Frind EO, Palmer C (1992) Thermal energy storage in an unconfined aquifer 2: model development, validation and application. Water Resour Res 28(10):2857–2867

    Article  Google Scholar 

  • Music B, Caya D (2007) Evaluation of the hydrological cycle over the Mississippi River basin as simulated by the Canadian regional climate model (CRCM). J Hydrometeorol 8(5):969–988

    Article  Google Scholar 

  • Painter SL, Coon ET, Atchley AL, Berndt M, Garimella R, Moulton JD, Svyatskiy D, Wilson CJ (2016) Integrated surface/subsurface permafrost thermal hydrology: model formulation and proof-of-concept simulations. Water Resour Res 52:6062–6077. https://doi.org/10.1002/2015WR018427

    Article  Google Scholar 

  • Painter SL, Karra S (2014) Constitutive model for unfrozen water content in subfreezing unsaturated soils. Vadose Zone J 13(4). https://doi.org/10.2136/vzj2013.04.0071

  • Pehme P, Parker BL, Cherry JA, Molson JW, Greenhouse JP (2013) Enhanced detection of hydraulically active fractures by temperature profiling in lined heated bedrock boreholes. J Hydrol 484:1–15. https://doi.org/10.1016/j.jhydrol.2012.12.048

    Article  Google Scholar 

  • Plummer DA, Caya D, Frigon A, Cote H, Giguere M, Paquin D, Biner S, Harvey R, de Elia R (2006) Climate and climate change over North America as simulated by the Canadian RCM. J Clim 19(13):3112–3132

    Article  Google Scholar 

  • Rasmussen LH, Zhang W, Hollesena J, Cable S, Christiansen, HH, Jansson P-E, Elberling B (2018) Modelling present and future permafrost thermal regimes in Northeast Greenland. Cold Regions Sci Technol 146:199–213. https://doi.org/10.1016/j.coldregions.2017.10.011

  • Rowland JC, Travis BJ, Wilson CJ (2011) The role of advective heat transport in talik development beneath lakes and ponds in discontinuous permafrost. Geophys Res Lett 38(17):L17504

    Article  Google Scholar 

  • Rühaak W, Anbergen H, Grenier C, McKenzie J, Kurylyk BL, Molson J, Roux N, Sass I (2015) Benchmarking numerical freeze/thaw models. Energy Procedia 76:301–310. https://doi.org/10.1016/j.egypro.2015.07.866

    Article  Google Scholar 

  • Shojae-Ghias M, Therrien R, Molson J, Lemieux J-M (2016) Controls on permafrost thaw in a coupled groundwater flow and heat transport system: Iqaluit Airport, Nunavut, Canada. Hydrogeol J. https://doi.org/10.1007/s10040-016-1515-7

  • Shojae-Ghias M, Therrien R, Molson J, Lemieux J-M (2018) Numerical simulations of shallow groundwater flow and heat transport in a continuous permafrost setting under the impact of climate warming. Can Geotech J 56(3):436–448. https://doi.org/10.1139/cgj-2017-0182

    Article  Google Scholar 

  • Sjöberg Y, Marklund P, Pettersson R, Lyon SW (2015) Geophysical mapping of palsa peatland permafrost. Cryosphere 9:465–478. https://doi.org/10.5194/tc-9-465-2015

    Article  Google Scholar 

  • Sjöberg Y, Coon E, Sannel ABK, Pannetier R, Harp D, Frampton A, Painter SL, Lyon SW (2016) Thermal effects of groundwater flow through subarctic fens: a case study based on field observations and numerical modeling. Water Resour Res 52:1591–1606. https://doi.org/10.1002/2015WR017571

    Article  Google Scholar 

  • Stull RB (2011) Wet-bulb temperature from relative humidity and air temperature. J Appl Meteorol Climatol 50(11):2267–2269

    Article  Google Scholar 

  • Voss CI, Provost AM (2010) SUTRA: a model for saturated–unsaturated variable-density ground-water flow with solute or energy transport. US Geol Surv Water Resour Invest 02-4231, 291 pp

  • Weast RC (ed) (1980) Handbook of chemistry and physics. CRC, Boca Raton, FL

  • Wellman TC, Voss CI, Walvoord MA (2013) Impacts of climate lake size, and supra and subpermafrost groundwater flow on lake-talik evolution, Yukon Flats, Alaska (USA). Hydrogeol J 21(1):281–298

    Article  Google Scholar 

  • Wu QB, Zhang TJ (2010) Changes in active layer thickness over the Qinghai-Tibetan plateau from 1995 to 2007. J Geophys Res 115:D09107

    Google Scholar 

  • Zhang TJ (2005) Influence of the seasonal snow cover on the ground thermal regime: an overview. Rev Geophys 43(4):RG4002

    Article  Google Scholar 

  • Zhang Y, Chen W, Riseborough DW (2006) Temporal and spatial changes of permafrost in Canada since the end of the Little Ice Age. J Geophys Res 111:D22103. https://doi.org/10.1029/2006JD007284

    Article  Google Scholar 

Download references

Acknowledgements

We thank Pierre Therrien for generous technical support, Dr. J. Raymond and Maria Velez Marquez of the INRS for help with the thermal conductivity measurements, and the local Inuit community of Umiujaq for access to the site.

Funding

The authors wish to acknowledge support from the Natural Sciences and Engineering Research Council of Canada (NSERC), through a CGS M scholarship, a Strategic Grant in partnership with the Quebec Ministry of Environment (Ministère du Développement Durable, de l’Environnement et la Lutte contre les Changements Climatiques; MDDELCC), and through a Discovery Grant to Dr. J. Molson. The northern scientific training program (NSTP) also financed part of the costs for field work by the first author at Umiujaq in 2016 and 2017. The financial and logistical support of the Centre d’études nordiques (CEN), Université Laval, is also greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Molson.

Additional information

This article is part of the topical collection “Hydrogeology of a cold-region watershed near Umiujaq (Nunavik, Canada)”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dagenais, S., Molson, J., Lemieux, JM. et al. Coupled cryo-hydrogeological modelling of permafrost dynamics near Umiujaq (Nunavik, Canada). Hydrogeol J 28, 887–904 (2020). https://doi.org/10.1007/s10040-020-02111-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-020-02111-3

Keywords

Navigation