Skip to main content

Advertisement

Log in

Groundwater occurrence in cold environments: examples from Nunavik, Canada

Occurrence des eaux souterraines dans des environnements froids: exemples du Nunavik, Canada

Ocurrencia de agua subterránea en ambientes fríos: ejemplos de Nunavik, Canadá

寒冷环境中地下水的赋存状况:加拿大努那维克的实例

Ocorrência de água subterrânea em ambientes frios: exemplos de Nunavik, Canadá

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Water availability and management issues related to the supply of drinking water in northern communities are problematic in Canada. While rivers and lakes are abundant, they are vulnerable to contamination and may become dry in winter due to freezing. Groundwater can often provide a more secure and sustainable water source, however its availability is limited in northern Canada due to the presence of permafrost. Moreover, the exploitation of northern aquifers poses a dual challenge of identifying not only permafrost-free areas, but also permeable areas which will allow groundwater recharge and exploitation. Suitable aquifers are not as common in northern Canada since the shallow subsurface is mostly composed of low-permeability crystalline rocks or unconsolidated sediments of glacial origin that are highly heterogeneous. In order to investigate groundwater occurrence and associated geological contexts in Nunavik (northern Quebec, Canada), along with exploring how these resources will evolve in response to climate change, field and compilation work were conducted in the surroundings of the four villages of Salluit, Kuujjuaq, Umiujaq and Whapmagoostui-Kuujjuarapik. These villages are located in different permafrost zones, ranging from continuous to discontinuous, as well as in different geological environments. It was found that despite the ubiquitous presence of permafrost, unfrozen aquifers could be identified, which suggests that groundwater may be available as a source of drinking water for small communities. Expected climate change, with predicted permafrost thawing and increases in temperature and precipitation, should enhance groundwater availability and may contribute to a more secure source of drinking water for northern communities.

Résumé

Les questions de disponibilité et de gestion de l’eau liées à l’approvisionnement en eau potable dans les communautés du nord sont problématiques au Canada. Alors que les rivières et les lacs sont abondants, ils sont vulnérables aux contaminations et peuvent s’assécher en hiver en raison du gel. Les eaux souterraines peuvent souvent fournir des ressources en eau plus sures et durables, cependant leur disponibilité est limité dans le nord du Canada à cause de la présence du pergélisol. De plus, l’exploitation des aquifères du nord pose un double défi d’identification non seulement des zones libres de pergélisol, mais aussi des zones perméables qui permettront la recharge des eaux souterraines et leur exploitation. Des aquifères appropriés ne sont pas aussi communs dans le nord du Canada, du fait que le soussol peu profond est surtout composé de roches cristallines de faible perméabilité ou des sédiments non consolidés d’origine glaciaire qui sont très hétérogènes. Afin d’étudier l’occurrence des eaux souterraines et les contextes géologiques associés au Nunavik (nord du Québec, Canada), en explorant la façon dont ces ressources vont évoluer en réponse au changement climatique, des travaux de terrain et de compilation ont été menés dans les environs des quatre villages de Salluit, Kuujjuaq, Umiujaq et Whapmagoostui-Kuujjuarapik. Ces villages sont situés dans différentes zones de pergélisol, allant du continu au discontinu, ainsi que dans différents environnements géologiques. Il a été constaté que, malgré la présence omniprésente du pergélisol, des aquifères non affectés par le gel ont pu être identifiés, ce qui suggère que les eaux souterraines peuvent être disponibles en tant que source d’eau potable pour de petites communautés. Le changement climatique attend, avec une prévision d’un dégel du pergélisol et une augmentation de la température et des précipitations, devrait améliorer la disponibilité des eaux souterraines et peut constituer une ressource en eau potable plus sûre pour les communautés du Nord.

Resumen

Las cuestiones de disponibilidad y manejo en relación con el suministro de agua potable son problemáticas en las comunidades del norte de Canadá. Mientras que los ríos y lagos son abundantes, ellos son vulnerables a la contaminación y pueden llegar a estar secos en invierno debido a la congelación. El agua subterránea puede proporcionar a menudo una fuente de agua más segura y sostenible, sin embargo, su disponibilidad es limitada en el norte de Canadá debido a la presencia de permafrost. Por otra parte, la explotación de los acuíferos del norte plantea el doble reto de identificar las áreas no sólo libres de permafrost, sino también las zonas permeables que permitan la recarga y la explotación de los acuíferos. Los acuíferos adecuados no son comunes en el norte de Canadá ya que el subsuelo poco profundo está compuesto principalmente por rocas cristalinas de baja permeabilidad o sedimentos no consolidados de origen glacial que son altamente heterogéneos. Con el fin de investigar la ocurrencia del agua subterránea y contextos geológicos asociados en Nunavik (norte de Quebec, Canadá), junto con la exploración de cómo estos recursos van a evolucionar en respuesta al cambio climático, se llevaron a cabo trabajos de recopilación y de campo en el entorno de cuatro pueblos, Salluit, Kuujjuaq, Umiujaq y Whapmagoostui-Kuujjuarapik. Estos pueblos se encuentran en distintas zonas de permafrost, que van desde continuo a discontinuo, así como en diferentes entornos geológicos. Se encontró que, a pesar de la presencia generalizada de permafrost, se pudieron identificar acuíferos no congeladas, lo que sugiere que el agua subterránea puede estar disponible como una fuente de agua potable para las comunidades pequeñas. El cambio climático previsto, con el pronosticado deshielo del permafrost y el aumento de la temperatura y la precipitación, debería mejorar la disponibilidad de agua subterránea y puede contribuir a una fuente más segura de agua potable para las comunidades del norte.

摘要

与北部社区饮用水供水有关的水资源可用量及管理在加拿大存在着一些问题。加拿大 河流和湖泊众多, 容易受到污染, 由于冰冻, 这些河流和湖泊变干涸。地下水可常常 提供更安全和更持久的水源, 然而, 在加拿大北部由于存在着永久冻土, 水源可用量 受到限制。另外, 北部的含水层开采对确定无永久冻土区和可以进行地下水补给和开 采的的永久冻土区提出了双重挑战。在加拿大北部合适的含水层并不常见, 因为浅层 地表以下主要由透水性低的结晶岩或冰川来源的松散沉积物组成. 为了调查(加拿大 魁北克北部)努那维克地下水赋存情况和相关的地质背景, 连同探索这些资源是怎样 针对气候变化演化的, 在Salluit、Kuujjuaq、Umiujaq 和 Whapmagoostui-Kuujjuarapik四个村庄进行了室外和综合研究工作。这些村庄位于连续、不连续的永久冻 土带及不同地质环境中。研究发现, 尽管普遍存在着永久冻土, 但非冰冻的含水层仍 可识别, 这表明地下水可以作为小型社区的饮用水水源使用。预料的气候变化、加上 预测的永久冻土融化及温度和降水的增加应该增加地下水可利用量, 并且为北部社区 更安全的饮用水源做出贡献.

Resumo

Questões sobre a disponibilidade e gestão da água relacionadas com o abastecimento de água potável em comunidades do norte são problemáticas no Canadá. Enquanto rios e lagos são abundantes, eles são vulneráveis à contaminação e podem tornar-se secos no inverno devido ao congelamento. Água subterrânea muitas vezes pode prover uma fonte de água mais segura e sustentável, no entanto a sua disponibilidade é limitada no norte do Canadá, devido à presença de pergelissolos (permafrost). Além disso, a exploração dos aquíferos do norte têm um duplo desafio de identificar não só áreas livres de pergelissolos, mas também áreas permeáveis que permitam a recarga e exploração dos aquíferos. Aquíferos adequados não são tão comuns no norte do Canadá já que a subsuperfície rasa é maioritariamente composta por rochas cristalinas de baixa permeabilidade ou sedimentos não consolidados de origem glacial que são altamente heterogêneos. A fim de investigar a ocorrência de água subterrânea e contextos geológicos associados em Nunavik (norte de Quebec, Canadá), juntamente como a forma de exploração destes recursos ira evoluir em resposta às alterações climáticas, a compilação e o trabalho de campo foram realizados no entorno das quatro aldeias de Salluit, Kuujjuaq, Umiujaq e Whapmagoostui-Kuujjuarapik. Estas aldeias estão localizadas em diferentes zonas de permafrost, que vão de contínuo a descontínuo, bem como diferentes ambientes geológicos. Foi descoberto que, apesar da presença ubíqua de pergelissolos, aquíferos descongelados podem ser identificados, o que sugere que a água subterrânea pode estar disponível como fonte de água potável para pequenas comunidades. Mudanças climáticas esperadas, com o descongelamento previsto do pergelissolo e aumento na temperatura e precipitação, deve aumentar a disponibilidade de água subterrânea e pode contribuir para uma fonte de água potável mais segura para as comunidades do norte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • ACGR (Associate Committee on Geotechnical Research) (1988) Glossary of permafrost and related ground-ice terms. Permafrost Subcommittee, Technical Memorandum 142, National Research Council of Canada, Ottawa

  • Alexeev S, Alexeeva L (2003) Hydrogeochemistry of the permafrost zone in the central part of the Yakutian diamond-bearing province, Russia. Hydrogeol J 11:574–581

    Article  Google Scholar 

  • Allard M, Lemay M (2012) Nunavik and Nunatsiavut: from science to policy: an integrated regional impact study (IRIS) of climate change and modernization. ArcticNet, Quebec City, QC, 303 pp

  • Allard M, Seguin MK (1985) La déglaciation d’une partie du versant Hudsonien des rivières Nastapoka, Sheldrake et à l’Eau Claire [The deglaciation of one part of the Hudsonian side of the Nastapoka, Sheldrake and à l’Eau Claire rivers watershed]. Geogr Phys Quatern 39(1):13–24. doi:10.7202/032581ar

    Google Scholar 

  • Allard M, Seguin MK (1987) Le pergélisol au Québec nordique: bilan et perspective [Permafrost in northern Québec: assessment and perspective]. Geogr Phys Quatern 41(1):141–152. doi:10.7202/032671ar

    Google Scholar 

  • Allard M, Fournier A, Gahé É, Seguin MK (1989) Le Quaternaire de la côte sud-est de la baie d’Ungava, Québec nordique [The Quaternary of the southern coast of Ungava Bay, northern Quebec]. Geogr Phys Quatern 43(3):325–336. doi:10.7202/032786ar

    Google Scholar 

  • Bense VF, Ferguson G, Kooi H (2009) Evolution of shallow groundwater flow systems in areas of degrading permafrost. Geophys Res Lett 36, L22401. doi:10.1029/2009GL039225

    Article  Google Scholar 

  • Bense V, Kooi H, Ferguson G, Read T (2012) Permafrost degradation as a control on hydrogeological regime shifts in a warming climate. J Geophys Res 117. doi 10.1029/2011JF002143

  • Burn CR (2002) Tundra lakes and permafrost, Richards Island, western Arctic coast, Canada. Can J Earth Sci 39(8):1281–1298. doi:10.1139/e02-035

    Article  Google Scholar 

  • Carey S, Boucher J, Duarte C (2013) Inferring groundwater contributions and pathways to streamflow during snowmelt over multiple years in a discontinuous permafrost subarctic environment (Yukon, Canada). Hydrogeol J 21:67–77

    Article  Google Scholar 

  • CEN (2014a) Environmental data from Whapmagoostui-Kuujjuarapik Region in Nunavik, Quebec, Canada, v. 1.3 (1987–2014). Nordicana D4. doi:10.5885/45057SL-EADE4434146946A7

  • CEN (2014b) Environmental data from the Umijuaq region in Nunavik, Quebec, Canada, v. 1.2 (1997–2014). Nordicana D9. doi:10.5885/45120SL-067305A53E914AF0

  • CEN (2014c) Environmental data from Boniface river region in Nunavik, Quebec, Canada, v. 1.1 (1988–2013). Nordicana D7. doi:10.5885/45129SL-DBDA2A77C0094963

  • CEN (2014d) Environmental data from the Salluit Region in Nunavik, Quebec, Canada, v. 1.3 (1987–2014). Nordicana D3. doi:10.5885/45048SL-4708BCCDFA124359

  • Clark T, Wares R (2004) Synthèse lithotectonique et métallogénique de l’Orogène du Nouveau–Québec (Fosse du Labrador) [Lithotectonic and metallogenic synthesis of New Quebec (Labrador Trough)]. Report MM 2004–01, Ministère des Ressources naturelles, de la Faune et des Parcs, Quebec City, 180 pp

  • Daigneault R-A (2008) Géologie du Quaternaire du nord de la péninsule d’Ungava, Québec [Quaternary geology of the northern Ungava peninsula]. GSC Bulletin 533, Geological Survey of Canada, Ottawa, 126 pp

  • Delpla I, Jung A-V, Baures E, Clement M, Thomas O (2009) Impacts of climate change on surface water quality in relation to drinking water production. Environ Int 35(8):1225–1233. doi:10.1016/j.envint.2009.07.001

    Article  Google Scholar 

  • Environment Canada (2016) Canadian climate normals 1981–2010 station data. http://climate.weather.gc.ca/climate_normals/results_1981_2010_e.html. Accessed March 7 2016

  • Fortier R (2006) Étude du pergélisolé de la zone 5–8 du plateau Katinniq au Nunavik (Québec). Report presented to XStrata Nickel, Quebec City, QC, 26 pp

  • Fortier R, Aubé-Maurice B (2008) Fast permafrost degradation near Umiujaq in Nunavik (Canada) since 1957 assessed from time-lapse aerial and satellite photographs. In: Proceedings 9th International Conference on Permafrost, vol 1. Fairbanks, AK, July 2008, pp 457–462

  • Fortier R, LeBlanc A-M, Yu W (2011a) Impacts of permafrost degradation on a road embankment at Umiujaq in Nunavik (Quebec), Canada. Can Geotech J 48:720–740. doi:10.1139/T10-101

    Article  Google Scholar 

  • Fortier R, Allard M, Lemieux J-M, Therrien R, Molson J, Fortier D (2011b) Stratégie de déploiement du réseau Immatsiak: cartographie des dépôts quaternaires et compilation des informations disponibles des villages nordiques de Whapmagoostui, Umiujaq, Salluit et Kuujjuaq [Deployment strategy for the Immatsiak network: surficial geology mapping and compilation of available data for the northern villages of Whapmagoostui, Umiujaq, Salluit et Kuujjuaq]. Synthesis report of phase I submitted to MDDEFP, Quebec City, QC, 126 pp

  • Fortier R, Lemieux J-M, Therrien R, Molson J (2012) Projet de déploiement du réseau Immatsiak: campagne de levés géophysiques pour des informations complémentaires aux sites des villages nordiques de Whapmagoostui, Umiujaq, Kuujjuaq et Salluit [Deployment of the Immatsiak network: geophysical surveys at the northern villages of Whapmagoostui, Umiujaq, Salluit et Kuujjuaq]. Synthesis report of phase II submitted to MDDEFP, Quebec City, QC, 229 pp

  • Fortier R, Lemieux J-M, Molson J and Therrien R (2013) Projet de déploiement du réseau Immatsiak: campagne de forages pour l’installation de puits d’observation des eaux souterraines dans un petit bassin versant pergélisolé à Umiujaq [Deployment of the Immatsiak network: drilling campaign and well installation for the monitoring of groundwater in a small watershed containing permafrost near Umiujaq]. Synthesis report of phase III submitted to MDDEFP, Quebec City, QC, 89 pp

  • Geophysics GPR International Inc. (2002) Whapmagoostui-Kuujjuarapik water project. Final report M-02546 presented to the Whapmagoostui Band Conuncil, Kuujjuarapik, Quebec City, QC, 141 pp

  • Gray JT, Pilon JA (1976) Permafrost distribution at Tasiujaq (Leaf Basin) on the southwest coast of Ungava Bay, New Québec. Rev Géogr Montréal 30:367–373

    Google Scholar 

  • Gray JT, Pilon JA, Poitevin J (1979) Le pergélisol et la couche active dans la toundra forestière au sud de la baie aux Feuilles, Nouveau-Québec [The permafrost and the active layer in the forest tundra south of Leaf Bay, northern Quebec]. Geogr Phys Quatern 33(3–4):253–264. doi:10.7202/1000362ar

    Google Scholar 

  • Grosse G, Romanovsky V, Jorgenson T, Anthony KW, Brown J, Overduin PP (2011) Vulnerability and feedbacks of permafrost to climate change. Eos Trans AGU 92(9):73. doi:10.1029/2011EO090001

    Article  Google Scholar 

  • Haldorsen S, Heim M (1999) An arctic groundwater system and its dependence upon climatic change: an example from Svalbard. Permafr Periglac 10(2):137–149. doi:10.1002/(SICI)1099-1530(199904/06)10:2<137::AID-PPP316>3.0.CO;2-#

    Article  Google Scholar 

  • Haldorsen S, Heim M, Lauritzen SE (1996) Subpermafrost groundwater, western Svalbard. Nord Hydrol 27:57–68. doi:10.2166/nh.1996.004

    Google Scholar 

  • Hillaire-Marcel C (1976) La déglaciation et le relèvement isostatique sur la côte est de la baie d’Hudson [Deglaciation and isostatic rebound of the eastern coast of Hudson Bay]. Cah Géog Québec 20:185–220. doi:10.7202/021319ar

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 1535 pp

    Google Scholar 

  • Ireson AM, Van Der Kamp G, Ferguson G, Nachshon U, Wheater HS (2013) Hydrogeological processes in seasonally frozen northern latitudes: understanding, gaps and challenges. Hydrogeol J 21(1):53–66

    Article  Google Scholar 

  • Kane DL, Carlson RF, Bowers CE (1973) Groundwater pore pressures adjacent to subarctic streams. In: Proceedings, Second International Conference on Permafrost, Yakutsk, USSR, 16–28 July 1973. North American Contribution, National Academy of Sciences, Washington, DC, pp 453–458

  • Kane DL, Hinkel KM, Goering DJ, Hinzman LD, Outcalt SI (2001) Non-conductive heat transfer associated with frozen soils. Global Planet Change 29(3–4):275–292. doi:10.1016/S0921-8181(01)00095-9

    Article  Google Scholar 

  • Kurylyk BL, MacQuarrie KTB, McKenzie JM (2014) Climate change impacts on groundwater and soil temperatures in cold and temperate regions: implications, mathematical theory, and emerging simulation tools. Earth-Sci Rev 138:313–334. doi:10.1016/j.earscirev.2014.06.006

    Article  Google Scholar 

  • Lemieux J-M, Sudicky EA, Peltier WR, Tarasov L (2008) Simulating the impact of glaciations on continental groundwater flow systems: 1. relevant processes and model formulation. J Geophys Res 113, F03017. doi:10.1029/2007JF000928

    Google Scholar 

  • Li T, Ducruc JP (1999) Les provinces naturelles. Niveau I du cadre écologique de référence du Québec [Natural Province. Level I of the Quebec reference ecological framework]. Ministère de l’Environnement, Quebec City, QC, 90 pp. Available from http://www.mddelcc.gouv.qc.ca/biodiversite/aires_protegees/provinces/partie4b.htm. Accessed 12 Mar 2015

  • Martin D, Bélanger D, Gosselin P, Brazeau J, Furgal C, Déry S, (2007) Drinking water and potential threats to human health in Nunavik: adaptation strategies under climate change conditions. Arctic 60(2):195–202. doi: 10.14430/arctic244

  • McKenzie JM, Voss CI (2013) Permafrost thaw in a nested groundwater-flow system. Hydrogeol J 21(1):299–316. doi:10.1007/s10040-012-0942-3

    Article  Google Scholar 

  • MDDEFP (2006) Guide de conception des installations de production d’eau potable, sections 5.1.3 et 5.2.1 [Conception guide for water production plants, sections 5.1.3 and 5.2.1]. http://www.mddelcc.gouv.qc.ca/eau/potable/guide/documents/volume1.pdf. Accessed 26 February 2015

  • MDDELCC (2016) Réseau de suivi des eaux souterraines du Québec [Quebec groundwater monitoring network]. http://www.mddelcc.gouv.qc.ca/eau/piezo/index.htm. Accesses 7 March 2016

  • Messier V, Lévesque B, Proulx J-F, Ward BJ, Libman M, Couillard M, Martin D, Hubert B (2007) Zoonotic diseases, drinking water and gastroenteritis in Nunavik: a brief portrait. Institut national de santé publique du Québec, Quebec City, QC, 24 pp

  • Michel FA, van Everdingen RO (1994) Changes in hydrogeologic regimes in permafrost regions due to climatic change. Permafr Periglac 5(3):191–195. doi:10.1002/ppp.3430050308

    Article  Google Scholar 

  • Molson JW, Frind EO (2015) HEATFLOW-SMOKER, Density-dependent flow and advective-dispersive transport of mass, thermal energy or residence time in 3D fractured porous media, Version 5.0, Université Laval, Quebec City and University of Waterloo, Waterloo, ON

  • Parent M, Paradis SJ (1995) Géologie des formations superficielles, région de Kuujjuarapik-Whapmagoostui, Québec nordique [Geology of surficial deposits, Kuujjuarapik-Whapmagoostui area]. Open File 2870, Geological Survey of Canada, Ottawa, 45 pp

  • Payette S, Bouchard A (2001) Le contexte biophysique et biogéographique [The biophysical and biogeographical context]. In: Payette S, Rochefort L (eds) Écologie des tourbières du Québec-Labrador [Ecology of peatlands in Quebec-Labrador]. Les Presses de l’Université Laval, Quebec City, QC, pp 9–37

    Google Scholar 

  • Petrone KC, Jones JB, Hinzman LD, Boone RD (2006) Seasonal export of carbon, nitrogen, and major solutes from Alaskan catchments with discontinuous permafrost. J Geophys Res 111, G02020. doi:10.1029/2005JG000055

    Google Scholar 

  • Poitevin J, Gray JT (1982) Distribution du pergélisol dans le bassin de la Grande Rivière de la Baleine, Québec [Permafrost distribution in the Great Whale River watershed, Quebec]. Nat Can 109:445–455

    Google Scholar 

  • Quebec Ministry of Natural Resources (2003) Vegetation zones and bioclimatic domains of the Quebec province. Quebec Ministry of Natural Resources, Quebec City, QC, 2 pp

  • Ricard S (2009) Village nordique de Salluit: approvisionnement en eau potable [Water supply for the Salluit village]. Laforest Nova Aqua, Saint-Laurent, QC, 36 pp

  • Sarrazin D, Allard M (2014a) Environmental data from the Inukjuak region in Nunavik, Quebec, Canada, v. 1.2 (2008–2014). Nordicana D13. doi:10.5885/45219SL-2B4081DF20FC42C8

  • Sarrazin D, Allard M (2014b) Environmental data from the Puvirnituq region in Nunavik, Quebec, Canada, v. 1.1 (2005–2014). Nordicana D17. doi:10.5885/45255SL-AEA3D430C4C44920

  • Sarrazin D, Allard M (2014c) Environmental data from the Akulivik region in Nunanik, Quebec, Canada, v. 1.2 (2004–2014). Nordicana D11. doi:10.5885/45192SL-7C87131DC13244B8

  • Sarrazin D, Allard M (2014d) Environmental data from the Quaqtaq region in Nunavik, Quebec, Canada, v. 1.2 (2004–2014). Nordicana D18. doi:10.5885/45201SL-6428B371C345424A

  • Sarrazin D, Allard M (2014e) Environmental data from the Kangirsuk region in Nunavik, Quebec, Canada, v. 1.2 (2005–2014). Nordicana D15. doi:10.5885/45228SL-80091133515742BA

  • Sarrazin D, Allard M (2014f) Environmental data from the Aupaluk region in Nunavik, Quebec, Canada, v. 1.2 (2004–2014). Nordicana D12. doi:10.5885/45210SL-3D6E63D4FB5344EE

  • Sarrazin D, Allard M (2014g) Environmental data from the Tasiujaq region in Nunavik, Quebec, Canada, v. 1.2 (2002–2014). Nordicana D10. doi:10.5885/45237SL-0069A9CE72074BC9

  • Sarrazin D, Allard M (2014h) Environmental data from the Kuujjuaq region in Nunavik, Quebec, Canada, v. 1.1 (2006–2014). Nordicana D16. doi:10.5885/45183SL-3F97ECBA62344F49

  • Sarrazin D, Allard M (2014i) Environmental data from the Kangiqsualujjuaq region in Nunavik, Quebec, Canada, v. 1.1 (1988–2013). Nordicana D14. doi:10.5885/45264SL-AF7FDA53F9E44927

  • Sharpe DR, Russell HAJ, Dyke L, Grasby SE, Gleeson T, Michaud Y, Savard MM, Wei M, Wozniak PRJ (2014) Hydrogeological regions of Canada. In: Rivera A (ed) Canada’s groundwater resources. Fitzhenry and Whiteside, Markham, ON, 803 pp

    Google Scholar 

  • Simard A (2000) Québec’s mineral potential: current situation. Chronique de la recherche minière 539 (juin 2000), Ministère des Ressources naturelles, Quebec City, QC, pp 3–15. Available from http://www.mern.gouv.qc.ca/publications/mines/geologie/geologie-potentiel-mineral.pdf. Accessed March 2016

  • Smith SL, Burgess MM (2002) A digital database of permafrost thickness in Canada. GSC Open File 4173, Geological Survey of Canada, Ottawa

  • Starinsky A, Katz A (2003) The formation of natural cryogenic brines. Geochim Cosmochim Acta 67(8):1475–1484. doi:10.1016/S0016-7037(02)01295-4

    Article  Google Scholar 

  • Statistics Canada (2008) Human activity and the environment: annual statistics, 2007 and 2008. Report 16-201-X, Statistics Canada, Ottawa, 159 pp

  • Statistics Canada (2011) Aboriginal peoples in Canada: First Nations People, Métis and Inuit. Available from http://www12.statcan.gc.ca/nhs-enm/2011/as-sa/99-011-x/99-011-x2011001-eng.cfm. Accessed March 2015

  • St-Onge MR, Lucas SB (1990) Early Proterozoic collisional tectonics in the internal zone of the Ungava (Trans-Hudson) orogen: Lac Nivilik and Sigluk map areas, Québec. Current research, Report 90-1C, Geological Survey of Canada, Ottawa, pp 119–132

  • Stotler RL, Frape SK, Ruskeeniemi T, Ahonen L, Paananen M, Onstott TC, Hobbs MY (2009) Hydrogeochemistry of groundwaters at and below the base of thick permafrost at Lupin, Nunavut, Canada. J Hydrol 373(1–2):80–95. doi:10.1016/j.jhydrol.2009.04.013

    Article  Google Scholar 

  • Stotler R, Frape S, Ruskeeniemi T, Pitkänen P, Blowes D (2012) The interglacial–glacial cycle and geochemical evolution of Canadian and Fennoscandian Shield groundwaters. Geochim Cosmochim Acta 76:45–67

    Article  Google Scholar 

  • Sykes JF, Normani SD, Jensen MR, Sudicky EA (2009) Regional-scale groundwater flow in a Canadian Shield setting. Can Geotech J 46(7):813–827

    Article  Google Scholar 

  • Thériault R, Beauséjour S (2012) Carte géologique du Québec: édition 2012 [Geological map of Quebec: 2012 edition]. DV 2012–06, Ministère des Ressources naturelles du Québec, Quebec City, QC

  • Therrien R, McLaren RG, Sudicky EA, and Park Y-J (2010) HydroGeoSphere: a three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport. Groundwater Simulations Group, Waterloo, ON, 453 pp

  • Utting N, Clark I, Lauriol B, Wieser M, Aeschbach-Hertig W (2012) Origin and flow dynamics of perennial groundwater in continuous permafrost terrain using isotopes and noble gases: case study of the Fishing Branch River, northern Yukon, Canada. Permafr Periglac 23(2):91–106. doi:10.1002/ppp.1732

    Article  Google Scholar 

  • van Everdingen RO (1990) Ground water hydrology. In: Prowse TD, Ommanney CSG (eds) Northern hydrology: Canadian perspectives. NHRI science report no. 1, National Hydrology Research Institute, Saskatoon, SK, pp 77–101

  • Vincent LA, Wang XL, Milewska EJ, Wan H, Yang F, Swail V (2012) A second generation of homogenized Canadian monthly surface air temperature for climate trend analysis. J Geophys Res 117, D18110. doi:10.1029/2012JD017859

    Google Scholar 

  • Walvoord MA, Voss CI, Wellman TP (2012) Influence of permafrost distribution on groundwater flow in the context of climate-driven permafrost thaw: example from Yukon Flats Basin, Alaska, USA. Water Resour Res 48(7). doi 10.1029/2011WR011595

  • Wellman TP, Voss CI, Walvoord MA (2013) Impacts of climate, lake size, and supra- and sub-permafrost groundwater flow on lake–talik evolution, Yukon Flats, Alaska, USA. Hydrogeol J 21(1):281–298. doi:10.1007/s10040-012-0941-4

    Article  Google Scholar 

  • Williams JR (1970) Ground water in permafrost Regions of Alaska. US Geol Surv Prof Pap 696, 83 pp

  • Woo M-K (2012) Permafrost hydrology. Springer, Heidelberg, Germany, 564 pp

    Book  Google Scholar 

  • Wright N, Hayashi M, Quinton WL (2009) Spatial and temporal variations in active layer thawing and their implication on runoff generation in peat-covered permafrost terrain. Water Resour Res 45, W05414. doi:10.1029/2008WR006880

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Quebec Ministry of Sustainable Development, Environment and Fight against Climate Change (MDDELCC), the Quebec Research Fund – Nature and Technology (FRQNT), and the Natural Sciences and Engineering Research Council of Canada (NSERC; through a Strategic Project Grant). We are thankful to Guillaume Bédard of the Kativik Regional Government and to the communities of Salluit, Kuujjuaq, Umiujaq and Whapmagoostui-Kuujjuarapik for their help and collaboration on this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Michel Lemieux.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemieux, JM., Fortier, R., Talbot-Poulin, MC. et al. Groundwater occurrence in cold environments: examples from Nunavik, Canada. Hydrogeol J 24, 1497–1513 (2016). https://doi.org/10.1007/s10040-016-1411-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-016-1411-1

Keywords

Navigation