Skip to main content
Log in

Assessing the recharge process and importance of montane water to adjacent tectonic valley-plain groundwater using a ternary end-member mixing analysis based on isotopic and chemical tracers

Evaluation du processus de recharge et importance de l’eau de montagne dans les eaux souterraines d’une vallée tectonique adjacente à l’aide de la méthode EMMA (end-member mixing analysis) basée sur des traceurs isotopiques et chimiques

Evaluación del proceso de recarga y la importancia del agua de la montaña para el agua subterránea adyacente a un valle tectónico utilizando un análisis ternario de mezclas de miembros extremos en base a trazadores químicos e isotópicos

利用以同位素和化學示蹤劑為基礎的三元端點混合分析評估山區地下水對鄰近構造谷地內地下水的補注及重要性

Avaliando o processo de recarga e a importância da água montanhosa para as águas subterrâneas tectônicas de vales adjacentes, utilizando uma análise de mistura de membro final ternário com base em traçadores isotópicos e químicos

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

A study in eastern Taiwan evaluated the importance of montane water contribution (MC) to adjacent valley-plain groundwater (VPG) in a tectonic suture zone. The evaluation used a ternary natural-tracer-based end-member mixing analysis (EMMA). With this purpose, VPG and three end-member water samples of plain precipitation (PP), mountain-front recharge (MFR), and mountain-block recharge (MBR) were collected and analyzed for stable isotopic compositions (δ2H and δ18O) and chemical concentrations (electrical conductivity (EC) and Cl). After evaluation, Cl is deemed unsuitable for EMMA in this study, and the contribution fractions of respective end members derived by the δ18O–EC pair are similar to those derived by the δ2H–EC pair. EMMA results indicate that the MC, including MFR and MBR, contributes at least 70% (679 × 106 m3 water volume) of the VPG, significantly greater than the approximately 30% of PP contribution, and greater than the 2050% in equivalent humid regions worldwide. The large MC is attributable to highly fractured strata and the steep topography of studied catchments caused by active tectonism. Furthermore, the contribution fractions derived by EMMA reflect the unique hydrogeological conditions in the respective study sub-regions. A region with a large MBR fraction is indicative of active lateral groundwater flow as a result of highly fractured strata in montane catchments. On the other hand, a region characterized by a large MFR fraction may possess high-permeability stream beds or high stream gradients. Those hydrogeological implications are helpful for water resource management and protection authorities of the studied regions.

Résumé

Une étude dans l’Est de Taiwan a évalué l’importance de la contribution de l’eau de montagne (CM) aux eaux souterraines de la vallée adjacente (ESV)dans une zone de suture tectonique. L’évaluation repose sur l’utilization de la méthode ternaire EMMA (end-member mixing analysis) basée sur des traceurs naturels. Dans ce but, ESV et trois échantillons d’eau de pluie de la vallée (PV), de la recharge du front montagneux (RFM), et de la recharge du massif montagneux (RMM) ont été collectés et analysés du point de vue des compositions isotopiques tables (δ2H et δ18O) et des concentrations chimiques (conductivité électrique (CE) et Cl). Après l’évaluation, Cl est. jugé impropre pour la méthode EMMA dans cette étude, et les fractions de contribution des membres finaux respectifs dérivés du couple δ18O–CE sont similaires à celles obtenues par le couple δ2H–EC. Les résultats d’EMMA indiquent que CM, y compris MRF et RMM, contribuent au moins à 70% d’ESV, ce qui est. significativement plus élevé que la contribution d’environ 30% de la contribution de PV, et supérieur aux 20 à 50% dans les régions humides équivalentes dans le monde. La grande contribution de CM est. attribuable à la présence des couches fortement fracturées et à la topographie abrupte des bassins versants étudiés causées par la tectonique active. De plus, les fractions de contribution obtenues par la méthode EMMA reflètent les conditions hydrogéologiques spécifiques présentes dans les sous-régions d’étude respectives. Une région avec une grande fraction de RMM indique un écoulement latéral actif d’eaux souterraines résultant des couches fortement fracturées des bassins montagneux. D’autre part, une région caractérisée par une grande fraction de RFM peut posséder des lits de cours d’eau très perméables ou des gradients hydrauliques élevés. Ces implications hydrogéologiques sont utiles pour la gestion des ressources en eau et les autorités de protection des régions étudiées.

Resumen

Un estudio en el este de Taiwán evaluó la importancia de la contribución del agua de la montaña (MC) al agua subterránea de un valle llano (VPG) adyacente a una zona de sutura tectónica. La evaluación utilizó un análisis ternario de mezcla de miembros extremos basado en un trazador natural (EMMA). Con este propósito, se recolectaron y analizaron el VPG y tres muestras de agua de los miembros extremos, de la precipitación de la llanura (PP), de la recarga en el frente montañoso (MFR) y de la recarga en el bloque montañoso (MBR) para determinar composiciones isotópicas estables (δ2H y δ18O) y las concentraciones químicas (conductividad eléctrica (EC) y Cl). Después de la evaluación, el Cl se considera inadecuado como EMMA en este estudio, y las fracciones de contribución de miembros extremos respectivos derivados por el par δ18O–EC son similares a los derivados del par δ2H–EC. Los resultados de EMMA indican que el MC, incluyendo MFR y MBR, contribuye al menos el 70% ( 679× 106 m3 del volumen de agua) del VPG, significativamente mayor que el aproximadamente 30% de la contribución de PP, y mayor al 20–50% en el equivalente en regiones húmedas en todo el mundo. El alto valor de MC es atribuible a los estratos altamente fracturados y a la topografía empinada causada por el tectonismo activo en las cuencas estudiadas. Además, las fracciones de contribución derivadas de EMMA reflejan condiciones hidrogeológicas únicas en las respectivas subregiones de estudio. Una región con una gran fracción de MBR es indicativa de un flujo de agua subterránea lateral activo como resultado de estratos altamente fracturados en las cuencas montañosas. Por otro lado, una región caracterizada por una gran fracción de MFR puede poseer lechos de los arroyos de una alta permeabilidad o altos gradientes de la corriente. Esas implicancias hidrogeológicas son útiles para las autoridades de gestión y para la protección de recursos hídricos de las regiones estudiadas.

摘要

本研究以台灣東部構造縫合帶為例,評估山區水源對相鄰谷地平原內地下水(VPG)的重要性。此評估是利用以天然示蹤劑為基礎的三源端點混合分析(EMMA)。為此,本研究採集VPG以及其三個端源水體:平原降水(PP),山前補注水(MFR)和山區補注水(MBR),並分析他們的穩定同位素組成(δ2H和δ18O)和化學成分濃度(電導度(EC)和Cl)。經過評估,Cl在本研究中被認為不適用於EMMA;同時,以δ18O–EC示蹤劑配對組所得之各端源水體貢獻百分比與以δ2H–EC配對組所得之百分比值相似。EMMA結果顯示,VPG中至少70% 的儲水(679 百萬噸水量)是來自包括MFR和MBR在內的山區水源 貢獻 (MC),其餘30% 來自降水的貢獻。此來自MC貢獻百分比值,也大於世界上與本研究區相似濕潤區的20–50%。本研究區顯示大量來自MC貢獻歸因於地體構造運動造成本研究集水區具高破碎岩層及高梯度地形的地質特性。再者,由EMMA結果顯示的貢獻百分比反映出各子研究區獨特的水文地質條件。一平原地下水區如果具大百分比的MBR,表示其集水區具較高度破碎的地層,導致有活躍側向的地下水進入平原。另一方面,具大百分比的MFR的平原地下水區可能表示此區河床具有較高的滲透率或梯度。這些由各端源貢獻百分比所顯示的水文地質含意,將有助於研究地區之水資源管理和保護單位的策略擬定。

Resumo

Um estudo no leste de Taiwan avaliou a importância da contribuição da água montanhosa (CM) para águas subterrâneas dos vales de planície adjacentes (ASVP) em uma zona de sutura tectônica. A avaliação usou uma análise de mistura de membro final (AMMF) ternário de traço natural. Com este objetivo, amostras de ASVP e de três membros finais de precipitação da planície (PP), da recarga de encosta montanha (REM) e da recarga do bloco montanhoso (RBM) foram coletadas e analisadas para composições isotópicas estáveis (δ2H e δ18O) e concentrações químicas (condutividade elétrica (CE) e Cl). Após a avaliação, Cl foi considerado inapropriado para AMMF neste estudo, e as frações de contribuição dos respectivos membros finais derivadas pelo par δ18O–CE são semelhantes às derivadas pelo par δ2H–CE. Os resultados de AMMF indicam que a CM, incluindo REM e RBM, contribui com pelo menos 70% ( 679× 106 m3 de volume de água) da ASVP, significativamente maior do que aproximadamente 30% da contribuição de PP e maior que 20–50% em regiões úmidas equivalentes em todo o mundo. A CM elevada é atribuível aos estratos altamente fraturados e à topografia íngreme das bacias hidrográficas estudadas causadas pelo tectonismo ativo. Além disso, as frações de contribuição derivadas pela AMMF refletem as condições hidrogeológicas únicas nas respectivas sub-regiões de estudo. Uma região com uma grande fração de RBM é indicativa de fluxo lateral ativo de água subterrânea como resultado dos estratos altamente fraturados nas bacias montanhosas. Por outro lado, uma região caracterizada por uma grande fração de REM pode possuir leitos de alta permeabilidade ou gradientes de alto fluxo. Essas implicações hidrogeológicas são úteis para a gestão de recursos hídricos e para as autoridades de proteção das regiões estudadas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ajami HA, Troch PA, Maddock IIIT, Meixner T, Eastoe C (2011) Quantifying mountain block recharge by means of catchment-scale storage-discharge relationships. Water Resour Res 47:W04504. https://doi.org/10.1029/2010WR009598

    Article  Google Scholar 

  • Araguás-Araguás L, Froehlich K, Rozanski K (1998) Stable isotope composition of precipitation over southeast Asia. J Geophys Res 103(D22):28721–28742. https://doi.org/10.1029/98JD02582

    Article  Google Scholar 

  • Banks EW, Simmons CT, Love AJ, Shand P (2011) Assessing spatial and temporal connectivity between surface water and groundwater in a regional catchment: implication for regional scale water quantity and quality. J Hydrol 404(1–2):30–49. https://doi.org/10.1016/j.jhydrol.2011.04.017

    Article  Google Scholar 

  • Brunner P, Cook PG, Simmons CT (2011) Disconnected surface water and groundwater: from theory to practice. Groundwater 49:460–467. https://doi.org/10.1111/j.1745-6584.2010.00752.x

    Article  Google Scholar 

  • Central Geological Survey (2007) Study of environmental isotopes and water quality in groundwater (1/2) (in Chinese). Ministry of Economic Affairs, Taipei, Taiwan

  • Central Geological Survey (2010) Explanatory text of the geologic map of Hualien (1:50,000). Ministry of Economic Affairs, Taipei, Taiwan

    Google Scholar 

  • Central Weather Bureau (1981–2010) Monthly precipitation: Hualien (in Chinese). http://www.cwb.gov.tw/V7/climate/monthlyMean/Taiwan_precp.htm. Accessed 1 June 2016

  • Clark ID, Fritz P (1997) Tracing the hydrological cycle. In: Environmental isotopes in hydrogeology. CRC, Boca Raton, FL

  • Coleman M, Shepherd TJ, Durham JJ, Rouse JE, Moore GR (1982) Reduction of water with zinc for hydrogen isotope analysis. Anal Chem 54:993–995

    Article  Google Scholar 

  • Epstein S, Mayeda T (1953) Variation of O18 content of waters from natural sources. Geochim Cosmochim Acta 4:213–224

    Article  Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Joerin C, Beven KJ, Iorgulescu I, Musy A (2002) Uncertainty in hydrograph separations based on geochemical mixing model. J Hydrol 255(1–4):90–106. https://doi.org/10.1016/S0022-1694(01)00509-1

    Article  Google Scholar 

  • Kao YH, Hsu SHM, Wang CH, Peng TR (2007) The spatial and temporal variation of hydrogen and oxygen isotopes of the surface water–groundwater system on Fon-lin area in Hualien River Basin (in Chinese with English abstract). J Chinese Agric Eng 53:22–30

  • Kendall C, McDonnell JJ (1998) Isotope tracers in catchment hydrology. Elsevier, Amsterdam

    Google Scholar 

  • Laronne Ben-Itzhak L, Gvirtzman H (2005) Groundwater flow along and across structural folding: an example from the Judean Desert, Israel. J Hydrol 312(1–4):51–69. https://doi.org/10.1016/j.jhydrol.2005.02.009

    Article  Google Scholar 

  • Liniger HP, Weingarther R (1998) Mountains and freshwater supply. Unasylva 49(195):39–46

    Google Scholar 

  • Lis G, Wassenaar L, Hendry M (2008) High-precision laser spectroscopy D/H and 18O/16O measurements of microliter natural water samples. Anal Chem 80:287–293. https://doi.org/10.1021/ac701716q

    Article  Google Scholar 

  • Liu Y, Yamanaka T (2012) Tracing groundwater recharge sources in a mountain–plain transitional area using stable isotopes and hydrochemistry. J Hydrol 464–465:116–126. https://doi.org/10.1016/j.jhydrol.2012.06.053

    Article  Google Scholar 

  • Liu TK, Chen CH, Yang TF, Lee M (2005) Tritium concentrations and radiocarbon ages of gushing groundwater from Hsuehshan Tunnel, northern Taiwan. Terr Atmos Ocean Sci 14:909–917

    Article  Google Scholar 

  • Maurya AS, Shah M, Deshpande RD, Bhardwaj RM, Prasad A, Gupta SK (2011) Hydrograph separation and precipitation source identification using stable water isotopes and conductivity: River Ganga at Himalayan foothills. Hydrol Process 25(10):1521–1530. https://doi.org/10.1002/hyp.7912

    Article  Google Scholar 

  • McGuire KJ, McDonnell JJ (2006) A review and evaluation of catchment transit time modeling. J Hydrol 330:543–563. https://doi.org/10.1016/j.jhydrol.2006.04.020

    Article  Google Scholar 

  • Ministry of Economic Affairs (1982) Tectonic evolution of Taiwan. The Ministry of Economic Affairs, Taipei, Taiwan

    Google Scholar 

  • Peng TR, Wang CH, Huang CC, Fei LY, Chen CTA, Hwong JL (2010) Stable isotopic characteristic of Taiwan’s precipitation: a case study of western Pacific monsoon region. Earth Planet Sci Lett 289:357–366. https://doi.org/10.1016/j.epsl.2009.11.024

    Article  Google Scholar 

  • Peng TR, Lu WC, Chen KY, Zhan WJ, Liu TK (2014) Groundwater-recharge connectivity between a hills-and-plains’ area of western Taiwan using water isotopes and electrical conductivity. J Hydrol 517:226–235. https://doi.org/10.1016/j.jhydrol.2014.05.010

    Article  Google Scholar 

  • Peng TR, Huang CC, Chen JE, Chiang LW, Zhan WJ (2016) Evaluating relative importance of groundwater recharge sources in a subtropical alluvial plain using tracer-based ternary end member mixing analysis (EMMA). Water Resour Manag 30(11):3861–3878. https://doi.org/10.1007/s11269-016-1393-8

    Article  Google Scholar 

  • Shih TT, Teng KH, Chang JC, Hwang CE, Shih CD (1980) Analytical geomorphometric maps of the reservoir watersheds in Taiwan. National Taiwan Normal University, Taipei, Taiwan

    Google Scholar 

  • Soulsby C, Tetzlaff D, Rodgers P, Dunn S, Waldron S (2006) Runoff processes, stream water residence times and controlling landscape characteristics in a mesoscale catchment: an initial evaluation. J Hydrol 325:197–221. https://doi.org/10.1016/j.jhydrol.2005.10.024

    Article  Google Scholar 

  • Taiwan wiki (2016) Famous rivers (in Chinese). http://www.twwiki.com/category-view-3823.html. Accessed 1 June 2016

  • Tetzlaff D, Seibert J, Soulsby C (2009) Inter-catchment comparison to assess the influence of topography and soils on catchment transit times in a geomorphic province: the Cairngorm Mountains, Scotland. Hydrol Process 23:1874–1886. https://doi.org/10.1002/hyp.7318

    Article  Google Scholar 

  • Tsai YB (1986) Seismotectonics of Taiwan. Tectonophysics 125(1–3):17–37. https://doi.org/10.1016/0040-1951(86)90005-3

    Google Scholar 

  • Unlenbrook S, Hoeg S (2003) Quantifying uncertainties in tracer-based hydrograph separations: a case study for two-, three and five-component hydrograph separations in a mountainous catchment. Hydrol Process 17(2):431–4530. https://doi.org/10.1002/hyp.1134

    Article  Google Scholar 

  • Viviroli D, Weingarther R (2004) The hydrological significance of mountains: from regional to global scale. Hydrol Earth Syst Sci 8(6):1016–1029. https://doi.org/10.5194/hess-8-1017-2004

    Article  Google Scholar 

  • Water Resources Agency (2003) Groundwater resources maps of Taiwan (in Chinese). Ministry of Economic Affairs, Taipei, Taiwan

    Google Scholar 

  • Water Resources Agency (2006) Statistics of water resources 2005 (in Chinese). Ministry of Economic Affairs, Taipei, Taiwan

  • Water Resources Agency (2007) Design and supervision for project of ‘groundwater observation well construction, maintenance, and related investigation and tests of fiscal year 2007’ (in Chinese). Ministry of Economic Affairs, Taipei, Taiwan

  • Water Resources Planning Institute (2002) Groundwater budgets and potential water resources of the Hua-Lien Creek alluvium by numerical modeling (in Chinese). Water Resources Agency, Ministry of Economic Affairs, Taichung, Taiwan

  • Wilson JL, Guan H (2004) Mountain block hydrology and mountain front recharge. In: Hogan JF, Phillips FM, Scanlon BR (eds) Groundwater recharge in a desert environment: the southwestern United States. American Geophysical Union, Washington, DC

  • Yeh HF, Lin HI, Lee CH, Hsu KC, Wu CS (2014) Identifying seasonal groundwater recharge using environmental stable isotopes. Water 6:2849–2861. https://doi.org/10.3390/w6102849

    Article  Google Scholar 

  • Yuan R, Song X, Zhang Y, Han D, Wang S, Tang C (2011) Using major ions and stable isotopes to characterize recharge regime of a fault-influenced aquifer in Beiyishui River watershed, North China Plain. J Hydrol 405(3–4):512–521. https://doi.org/10.1016/j.jhydrol.2011.05.048

    Article  Google Scholar 

Download references

Acknowledgements

Work on this report is divided into two parts. That focusing on meteoric water is an achievement attributable to assistance from the National Science Council, Taiwan (NSC 101-2116-M-005-001 and NSC 102-2116-M-005-001) and that regarding groundwater is attributable to assistance from the Central Geological Survey, Ministry of Economic Affairs, Taiwan (5926901000-02-95-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsung-Ren Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, TR., Zhan, WJ., Tong, LT. et al. Assessing the recharge process and importance of montane water to adjacent tectonic valley-plain groundwater using a ternary end-member mixing analysis based on isotopic and chemical tracers. Hydrogeol J 26, 2041–2055 (2018). https://doi.org/10.1007/s10040-018-1741-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-018-1741-2

Keywords

Navigation