Skip to main content
Log in

Tracing submarine groundwater discharge flux in Tolo Harbor, Hong Kong (China)

Traçage des débits sous-marins d’eaux souterraines dans le port de Tolo, Hong Kong (Chine)

Trazado del flujo de descarga de agua subterránea submarina en Tolo Harbor, Hong Kong (China)

追踪(中国)香港吐露港海底地下水排泄通量

Rastreando o fluxo de descarga de águas subterrâneas submarina em Tolo Harbor, Hong Kong (China)

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Submarine groundwater discharge (SGD) is an important pathway for groundwater and associated chemicals to discharge to the sea. Groundwater levels monitored along a transect perpendicular to the shoreline are used to calculate SGD flux from the nearshore aquifer to Tolo Harbor, Hong Kong (China). The calculated SGD flux—recharge/discharge measured with Darcy’s Law methods—agrees well with estimates based on geo-tracer techniques and seepage meter in Tolo Harbor during previous studies. The estimated freshwater SGD is 1.69–2.0 m2/d at the study site and 0.3 ± 0.04 cm/d for the whole of Tolo Harbor, which is comparable to the river discharge (0.25 ± 0.07 cm/d) and precipitation (0.45 ± 0.15 cm/d). The tide-driven SGD in the intertidal zone is 13.98–17.59 m2/d at the study site and 2.42 ± 0.56 cm/d for the whole of Tolo Harbor. The SGD occurring in the subtidal zone and the bottom of Tolo Harbor is 3.12 ± 4.63 cm/d. Fresh SGD accounts for ~5% of the total SGD, while the rest (~95%) is contributed by saline SGD driven by various forces. About 96% of the tide-driven SGD in the intertidal zone occurs in the ebbing tide period because the head difference between the groundwater level and sea level is great during this period. Tide-driven SGD in the spring tide is ~1.2 times that during neap tide. The tidal fluctuation amplitude and tide-driven SGD in the intertidal zone are positively correlated to each other; thus, a spring neap variation of the tide-driven SGD is observed.

Résumé

La décharge des eaux souterraines dans le milieu marin (SGD) est une voie importante pour les eaux souterraines et les éléments chimiques associés à la décharge dans la mer. Les niveaux d’eau souterraine enregistrés le long d’un transect perpendiculaire au rivage sont utilisés pour calculer le flux de SGD de l’aquifère côtier vers le port de Tolo, Hong Kong (Chine). Le flux de SGD calculé – recharge/décharge mesurés avec les méthodes de la loi de Darcy—est cohérent avec les estimations basées sur les techniques de géo-traceur et le compteur d’infiltration installé dans le port de Tolo au cours des études précédentes. Le SGD estimé d’eau douce est de 1.69–2.0 m2/j au droit du site d’étude et de 0.3 ± 0.04 cm/j pour l’ensemble du port de Tolo, ce qui est comparable au débit de la rivière (0.25 ± 0.07 cm/j) et des précipitations (0.45 ± 0.15 cm/j). Le SGD influencé par la marée dans la zone intertidale est de 13.98–17.59 m2/j au niveau du site d’étude et de 2.42 ± 0.56 cm/j pour la totalité du port de Tolo. Le SGD dans la zone de marée basse et sur le fonds du port de Tolo est de 3.12 ± 4.63 cm/j. Le SGD d’eau douce représente environ 5% du SGD total, tandis que le reste (~ 95%) est assuré par le SGD salé piloté par diverses forces. Environ 96% du SGD piloté par les marées dans la zone intertidale se produit pendant la période de reflux de marée car la différence de charge hydraulique entre le niveau de la nappe phréatique et le niveau de la mer est importante pendant cette période. Le SGD piloté par la marée au cours de la marée de vive eau est ~ 1.2 fois celui de la marée de morte eau. L’amplitude des fluctuations de la marée et le SGD piloté par les marées dans la zone intertidale sont corrélés de manière positive les unes aux autres; ainsi, une variation de morte eau au printemps du SGD piloté par la marée est observée.

Resumen

La descarga submarina de agua subterránea (SGD) es una vía importante para que el agua subterránea y los productos químicos asociados se descarguen al mar. Los niveles de agua subterránea monitoreados a lo largo de una transecta perpendicular a la costa se utilizan para calcular el flujo SGD desde el acuífero costero a Tolo Harbor, Hong Kong (China). El flujo SGD calculado—recarga/descarga medida con los métodos de la Ley de Darcy—está de acuerdo con las estimaciones basadas en las técnicas de geotrazadores y el medidor de filtración en Tolo Harbor durante estudios previos. El SGD estimado de agua dulce es de 1.69–2.0 m2/d en el sitio de estudio y de 0.3 ± 0.04 cm/d para el conjunto del Tolo Harbor, que es comparable con la descarga del río (0.25 ± 0.07 cm/d) y la precipitación 0.45 ± 0.15 cm/d). El SGD impulsado por mareas en la zona intermareal es de 13.98–17.59 m2/d en el sitio de estudio y 2.42 ± 0.56 cm/d en el conjunto del Tolo Harbor. El SGD que ocurre en la zona submareal y en la parte inferior de Tolo Harbor es de 3.12 ± 4.63 cm/d. El SGD dulce representa ~5% del SGD total, mientras que el resto (~95%) es aportado por el SGD salino impulsado por varias fuerzas. Aproximadamente el 96% del SGD impulsado por mareas en la zona intermareal ocurre durante el período de marea baja porque la diferencia de altura entre el nivel del agua subterránea y el nivel del mar es grande durante este período. El SGD impulsado por la marea en la marea viva es ~1.2 veces mayor que durante la marea muerta. La amplitud de la fluctuación de la marea y la SGD inducida por la marea en la zona intermareal se correlacionan positivamente entre sí; por lo tanto, se observa una variación viva muerta de la SGD impulsada por la marea.

摘要

海底地下水排泄是地下水及其相关化学物质排泄到海洋的重要通道。利用沿与海岸线垂直的横断面监测的地下水位计算了(中国)香港近岸含水层海底地下水排泄到吐露港的通量。计算的海底地下水排泄通量—采用达西定律方法测量的补给量/排泄量—与先前研究中根据地质示踪技术和渗流表测量技术得到的估算值一致。研究区估算的海底地下淡水为1.69–2.0 m2/d,整个吐露港为0.3 ± 0.04 cm/d,可与河流的排泄量(0.25 ± 0.07 cm/d)和降水量(0.45 ± 0.15 cm/d)相比较。潮间带潮间带的潮汐驱动海底地下水排泄通量在研究区为13.98–17.59 m2/d,对整个吐露港为2.42 ± 0.56 cm/d。潮下带及吐露港底部出现的海底地下水排泄为 3.12 ± 4.63 cm/d。海底地下淡水占整个海地下水排泄的大约5%,而剩下的(大约95%)由各种力量驱使的海底下地下咸水所贡献。潮间带大约96%的潮汐驱使的海底地下水出现在退潮期,因为在此期间地下水位和海面之间的水头差很大。大潮期的潮汐驱使的海底地下水是小潮期潮汐驱使的海底地下水的大约1.2倍。潮间带的潮汐波动振幅和潮汐驱使的海底地下水排泄量相互成正相关,因此,观测到了潮汐驱使海底地下水排泄量的大小潮期变化。

Resumo

Descargas de águas subterrâneas submarinas (DAS) é um importante padrão para águas subterrâneas e elementos químicos associados à descarga no mar. Níveis das águas subterrâneas monitorados ao longo de um transecto perpendicular à costa foram utilizados para calcular o fluxo de DAS de um aquífero próximo da costa de Tolo Harbor, Hong Kong (China). O fluxo de DAS calculado – recarga/descarga mensurados com métodos baseados na Lei de Darcy – concorda bem com estimativas baseadas em técnicas de geotraçadores e medidas de infiltração realizadas em Tolo Harbor durante estudos prévios. A DAS de água doce estimada é 1.69–2.0 m2/d no local de estudo e 0.3 ± 0.04 cm/d para todo Tolo Harbor, que é comparável com a descarga do rio (0.25 ± 0.07 cm/d) e precipitação (0.45 ± 0.15 cm/d). A DAS devida às marés na zona intermarés é 13.98–17.59 m2/d no local de estudo e 2.42 ± 0.56 cm/d para todo Tolo Harbor. A DAS ocorrendo na zona submarés e no fundo de Tolo Harbor é 3.12 ± 4.63 cm/d. DAS doces contabilizam ~5% da DAS total enquanto o restante (~95%) é transferido pela DAS salinas oriundas de varias forçantes. Cerca de 96% da DAS devida à maré na zona intermarés ocorre no período da maré de refluxo porque a diferença de carga entre o nível das águas subterrâneas e o nível do mar é maior durante este período. A DAS devida à maré na maré viva é ~ 1.2 vezes que durante a maré morta. A amplitude da flutuação das marés e a DAS controlada por maré na zona intermarés estão positivamente correlacionadas entre si; assim, observa-se uma variação da DAS controlada por maré na maré morta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abarca E, Karam H, Hemond HF, Harvey CF (2013) Transient groundwater dynamics in a coastal aquifer: the effects of tides, the lunar cycle, and the beach profile. Water Resour Res 49(5):2473–2488

    Article  Google Scholar 

  • Amoozegar A (1989) A compact constant-head permeameter for measuring saturated hydraulic conductivity of the vadose zone. Soil Sci Soc Am J 53(5):1356–1361

    Article  Google Scholar 

  • Amoozegar A (1992) Compact constant head permeameter: a convenient device for measuring hydraulic conductivity. In: Advances in measurement of soil physical properties: bringing theory into practice. SSSA Special Publ. Soil Science Society of America, Madison, WI, pp 31–42

  • Atkins ML, Santos IR, Ruiz-Halpern S, Maher DT (2013) Carbon dioxide dynamics driven by groundwater discharge in a coastal floodplain creek. J Hydrol 493:30–42

    Article  Google Scholar 

  • Beck AJ, Tsukamoto Y, Tovar-Sanchez A, Huerta-Diaz M, Bokuniewicz HJ, Sanudo-Wilhelmy SA (2007) Importance of geochemical transformations in determining submarine groundwater discharge-derived trace metal and nutrient fluxes. Appl Geochem 22(2):477–490

    Article  Google Scholar 

  • Beck M, Dellwig O, Holstein JM, Grunwald M, Liebezeit G, Schnetger B, Brumsack HJ (2008) Sulphate, dissolved organic carbon, nutrients and terminal metabolic products in deep pore waters of an intertidal flat. Biogeochemistry 89(2):221–238

    Article  Google Scholar 

  • Bobo AM, Khoury N, Li HL, Boufadel MC (2012) Groundwater flow in a tidally influenced Gravel Beach in Prince William Sound, Alaska. J Hydrol Eng 17(4):478–494

    Article  Google Scholar 

  • Burnett WC, Dulaiova H (2003) Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements. J Environ Radioact 69(1–2):21–35

    Article  Google Scholar 

  • Burnett WC, Bokuniewicz H, Huettel M, Moore WS, Taniguchi M (2003) Groundwater and pore water inputs to the coastal zone. Biogeochemistry 66(1–2):3–33

    Article  Google Scholar 

  • Burnett WC, Aggarwal PK, Aureli A, Bokuniewicz H, Cable JE, Charette MA et al. (2006) Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci Total Environ 367(2–3):498–543

  • Cable JE, Martin JB (2008) In situ evaluation of nearshore marine and fresh pore water transport into Flamengo Bay, Brazil. Estuar Coast Shelf Sci 76(3):473–483

    Article  Google Scholar 

  • Cable JE, Bugna GC, Burnett WC, Chanton JP (1996a) Application of 222Rn and CH4 for assessment of groundwater discharge to the coastal ocean. Limnol Oceanogr 41(6):1347–1353

    Article  Google Scholar 

  • Cable JE, Burnett WC, Chanton JP, Weatherly GL (1996b) Estimating groundwater discharge into the northeastern Gulf of Mexico using radon-222. Earth Planet Sci Lett 144(3–4):591–604

    Article  Google Scholar 

  • Cable JE, Martin JB, Jaeger J (2006) Exonerating Bernoulli? On evaluating the physical and biological processes affecting marine seepage meter measurements. Limnol Oceanogr Methods 4:172–183

    Article  Google Scholar 

  • Cai WJ, Wang YC, Krest J, Moore WS (2003) The geochemistry of dissolved inorganic carbon in a surficial groundwater aquifer in north inlet, South Carolina, and the carbon fluxes to the coastal ocean. Geochim Cosmochim Acta 67(4):631–639

    Article  Google Scholar 

  • Cassiani G (1998) A new method for the interpretation of the constant-head well permeameter. J Hydrol 210(1–4):11–20

    Article  Google Scholar 

  • Charette MA, Buesseler KO, Andrews JE (2001) Utility of radium isotopes for evaluating the input and transport of groundwater-derived nitrogen to a Cape Cod estuary. Limnol Oceanogr 46(2):465–470

    Article  Google Scholar 

  • Chevis DA, Johannesson KH, Burdige DJ, Cable JE, Martin JB, Roy M (2015) Rare earth element cycling in a sandy subterranean estuary in Florida, USA. Mar Chem 176:34–50

    Article  Google Scholar 

  • Corbett DR, Dillon K, Burnett W, Chanton J (2000) Estimating the groundwater contribution into Florida Bay via natural tracers, 222Rn and CH4. Limnol Oceanogr 45(7):1546–1557

    Article  Google Scholar 

  • Couturier M, Nozais C, Chaillou G (2016) Microtidal subterranean estuaries as a source of fresh terrestrial dissolved organic matter to the coastal ocean. Mar Chem 186:46–57

    Article  Google Scholar 

  • Cyronak T, Santos IR, Erler DV, Maher DT, Eyre BD (2014) Drivers of pCO2 variability in two contrasting coral reef lagoons: the influence of submarine groundwater discharge. Glob Biogeochem Cycles 28(4):398–414

    Article  Google Scholar 

  • Dorsett A, Cherrier J, Martin JB, Cable JE (2011) Assessing hydrologic and biogeochemical controls on pore-water dissolved inorganic carbon cycling in a subterranean estuary: a 14C and 13C mass balance approach. Mar Chem 127(1–4):76–89

    Article  Google Scholar 

  • Dulaiova H, Burnett WC (2008) Evaluation of the flushing rates of Apalachicola Bay, Florida via natural geochemical tracers. Mar Chem 109(3–4):395–408

    Article  Google Scholar 

  • Fetter CW (2000) Applied hydrogeology. Upper Saddle River, Prentice Hall, NJ

    Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Upper Saddle River, Prentice Hall, NJ

    Google Scholar 

  • Garcia-Solsona E, Garcia-Orellana J, Masque P, Rodellas V, Mejias M, Ballesteros B, Dominguez JA (2010) Groundwater and nutrient discharge through karstic coastal springs (Castello, Spain). Biogeosciences 7(9):2625–2638

    Article  Google Scholar 

  • Gonneea ME, Charette MA (2014) Hydrologic controls on nutrient cycling in an unconfined coastal aquifer. Environ Sci Technol 48(24):14178–14185

    Article  Google Scholar 

  • Gonneea ME, Mulligan AE, Charette MA (2013) Seasonal cycles in radium and barium within a subterranean estuary: implications for groundwater derived chemical fluxes to surface waters. Geochim Cosmochim Acta 119:164–177

    Article  Google Scholar 

  • Heiss JW, Michael HA (2014) Saltwater-freshwater mixing dynamics in a sandy beach aquifer over tidal, spring-neap, and seasonal cycles. Water Resour Res 50(8):6747–6766

    Article  Google Scholar 

  • Holmes PR (1988) Tolo Harbor: the case for integrated water-quality management in a coastal environment. J Inst Water Environ Manag 2(2):171–179

    Article  Google Scholar 

  • Hong Kong Observatory (2017) Climatological information services. http://www.hko.gov.hk/cis/climat_e.htm. Accessed December 2017

  • Hougham AL, Moran SB, Masterson JP, Kelly RP (2008) Seasonal changes in submarine groundwater discharge to coastal salt ponds estimated using 226Ra and 228Ra as tracers. Mar Chem 109(3-4):268–278

    Article  Google Scholar 

  • Johannesson KH, Chevis DA, Burdige DJ, Cable JE, Martin JB, Roy M (2011) Submarine groundwater discharge is an important net source of light and middle REEs to coastal waters of the Indian River Lagoon, Florida, USA. Geochim Cosmochim Acta 75(3):825–843

    Article  Google Scholar 

  • Kelly RP, Moran SB (2002) Seasonal changes in groundwater input to a well-mixed estuary estimated using radium isotopes and implications for coastal nutrient budgets. Limnol Oceanogr 47(6):1796–1807

    Article  Google Scholar 

  • Knee KL, Street JH, Grossman EE, Boehm AB, Paytan A (2010) Nutrient inputs to the coastal ocean from submarine groundwater discharge in a groundwater-dominated system: relation to land use (Kona Coast, Hawaii, USA). Limnol Oceanogr 55(3):1105–1122

    Article  Google Scholar 

  • Kroeger KD, Charette MA (2008) Nitrogen biogeochemistry of submarine groundwater discharge. Limnol Oceanogr 53(3):1025–1039

    Article  Google Scholar 

  • Lee DR (1977) A device for measuring seepage flux in lakes and estuaries. Limnol Oceanogr 22(1):140–147

    Article  Google Scholar 

  • Lee YW, Kim G, Lim WA, Hwang DW (2010) A relationship between submarine groundwater-borne nutrients traced by Ra isotopes and the intensity of dinoflagellate red-tides occurring in the Southern Sea of Korea. Limnol Oceanogr 55(1):1–10

    Article  Google Scholar 

  • Lee CM, Jiao JJ, Luo X, Moore WS (2012) Estimation of submarine groundwater discharge and associated nutrient fluxes in Tolo Harbour, Hong Kong. Sci Total Environ 433:427–433

    Article  Google Scholar 

  • Li L, Barry DA, Stagnitti F, Parlange JY (1999) Submarine groundwater discharge and associated chemical input to a coastal sea. Water Resour Res 35(11):3253–3259

    Article  Google Scholar 

  • Li H, Sun P, Chen S, Xia Y, Liu S (2010) A falling-head method for measuring intertidal sediment hydraulic conductivity. Ground Water 48(2):206–211

    Article  Google Scholar 

  • Liu Y (2017) Geochemical processes and solute transport in coastal groundwater mixing zone. PhD Thesis, The University of Hong Kong, Hong Kong

  • Liu Q, Dai M, Chen W, Huh CA, Wang G, Li Q, Charette MA (2012) How significant is submarine groundwater discharge and its associated dissolved inorganic carbon in a river-dominated shelf system? Biogeosciences 9(5):1777–1795

    Article  Google Scholar 

  • Liu Y, Jiao JJ, Luo X (2016) Effects of inland water level oscillation on groundwater dynamics and land-sourced solute transport in a coastal aquifer. Coast Eng 114:347–360

    Article  Google Scholar 

  • Liu Y, Jiao JJ, Liang W (2017a) Tidal fluctuation influenced physicochemical parameter dynamics in coastal groundwater mixing zone. Estuar Coasts. 14 pp. https://doi.org/10.1007/s12237-017-0335-x

  • Liu Y, Jiao JJ, Liang W, Kuang X (2017b) Hydrogeochemical characteristics in coastal groundwater mixing zone. Appl Geochem 85(Part A):49–60

    Article  Google Scholar 

  • Liu Y, Jiao JJ, Liang W, Luo X (2017c) Tidal pumping induced nutrients dynamics and biogeochemical implications in an intertidal aquifer. J Geophys Res: Biogeosci 122:3322–3342

    Article  Google Scholar 

  • Luo X, Jiao JJ (2016) Submarine groundwater discharge and nutrient loadings in Tolo Harbor, Hong Kong using multiple geotracer-based models, and their implications of red tide outbreaks. Water Res 102:11–31

    Article  Google Scholar 

  • Luo X, Jiao JJ, Moore WS, Lee CM (2014) Submarine groundwater discharge estimation in an urbanized embayment in Hong Kong via short-lived radium isotopes and its implication of nutrient loadings and primary production. Mar Pollut Bull 82(1–2):144–154

    Article  Google Scholar 

  • Martin JB, Cable JE, Smith C, Roy M, Cherrier J (2007) Magnitudes of submarine groundwater discharge from marine and terrestrial sources: Indian River Lagoon, Florida. Water Resour Res 43(5):W05440

    Article  Google Scholar 

  • Michael HA, Mulligan AE, Harvey CF (2005) Seasonal oscillations in water exchange between aquifers and the coastal ocean. Nature 436(7054):1145–1148

    Article  Google Scholar 

  • Moore WS (1996) Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Nature 380(6575):612–614

    Article  Google Scholar 

  • Moore WS (2010) The effect of submarine groundwater discharge on the ocean. Annu Rev Mar Sci 2(1):59–88

    Article  Google Scholar 

  • Moore WS, Sarmiento JL, Key RM (2008) Submarine groundwater discharge revealed by 228Ra distribution in the upper Atlantic Ocean. Nat Geosci 1(5):309–311

    Article  Google Scholar 

  • Moore WS, Beck M, Riedel T, van der Loeff MR, Dellwig O, Shaw TJ et al. (2011) Radium-based pore water fluxes of silica, alkalinity, manganese, DOC, and uranium: a decade of studies in the German Wadden Sea. Geochim Cosmochim Acta 75(21): 6535-6555

  • Mulligan AE, Charette MA (2006) Intercomparison of submarine groundwater discharge estimates from a sandy unconfined aquifer. J Hydrol 327(3–4):411–425

    Article  Google Scholar 

  • Nielsen P (1990) Tidal dynamics of the water-table in beaches. Water Resour Res 26(9):2127–2134

    Google Scholar 

  • Odong J (2007) Evaluation of empirical formulae for determination of hydraulic conductivity based on grain-size analysis. J Am Sci 3(3):54–60

    Google Scholar 

  • Paytan A, Shellenbarger GG, Street JH, Gonneea ME, Davis K, Young MB, Moore WS (2006) Submarine groundwater discharge: an important source of new inorganic nitrogen to coral reef ecosystems. Limnol Oceanogr 51(1):343–348

    Article  Google Scholar 

  • Pedescoll A, Knowles PR, Davies P, Garcia J, Puigagut J (2012) A comparison of in situ constant and falling head permeameter tests to assess the distribution of clogging within horizontal subsurface flow constructed wetlands. Water Air Soil Pollut 223(5):2263–2275

    Article  Google Scholar 

  • Riedel T, Lettmann K, Beck M, Brumsack HJ (2010) Tidal variations in groundwater storage and associated discharge from an intertidal coastal aquifer. J Geophys Res-Oceans 115:C04013

    Article  Google Scholar 

  • Robinson C, Gibbes B, Li L (2006) Driving mechanisms for groundwater flow and salt transport in a subterranean estuary. Geophys Res Lett 33(3):L03402

    Article  Google Scholar 

  • Robinson C, Li L, Prommer H (2007) Tide-induced recirculation across the aquifer–ocean interface. Water Resour Res 43(7):W07428

    Article  Google Scholar 

  • Roy M, Martin JB, Cable JE, Smith CG (2013) Variations of iron flux and organic carbon remineralization in a subterranean estuary caused by inter-annual variations in recharge. Geochim Cosmochim Acta 103:301–315

    Article  Google Scholar 

  • Ruxton BP, Berry L (1957) Weathering of granite and associated erosional features in Hong Kong. Geol Soc Am Bull 68(10):1263–1292

    Article  Google Scholar 

  • Santos IR, Burnett WC, Chanton J, Dimova N, Peterson RN (2009a) Land or ocean? Assessing the driving forces of submarine groundwater discharge at a coastal site in the Gulf of Mexico. J Geophys Res 114:C04012

    Article  Google Scholar 

  • Santos IR, Burnett WC, Dittmar T, Suryaputra IGNA, Chanton J (2009b) Tidal pumping drives nutrient and dissolved organic matter dynamics in a Gulf of Mexico subterranean estuary. Geochim Cosmochim Acta 73(5):1325–1339

    Article  Google Scholar 

  • Santos IR, Dimova N, Peterson RN, Mwashote B, Chanton J, Burnett WC (2009c) Extended time series measurements of submarine groundwater discharge tracers (222Rn and CH4) at a coastal site in Florida. Mar Chem 113(1–2):137–147

    Article  Google Scholar 

  • Santos IR, Peterson RN, Eyre BD, Burnett WC (2010) Significant lateral inputs of fresh groundwater into a stratified tropical estuary: evidence from radon and radium isotopes. Mar Chem 121(1–4):37–48

    Article  Google Scholar 

  • Santos IR, Cook PL, Rogers L, Weys Jd, Eyre BD (2012a) The “salt wedge pump”: convection-driven pore-water exchange as a source of dissolved organic and inorganic carbon and nitrogen to an estuary. Limnol Oceanogr 57(5):1415–1426

    Article  Google Scholar 

  • Santos IR, Eyre BD, Huettel M (2012b) The driving forces of porewater and groundwater flow in permeable coastal sediments: a review. Estuar Coast Shelf Sci 98:1–15

    Article  Google Scholar 

  • Santos IR, Beck M, Brumsack HJ, Maher DT, Dittmar T, Waska H, Schnetger B (2015) Porewater exchange as a driver of carbon dynamics across a terrestrial-marine transect: insights from coupled 222Rn and pCO2 observations in the German Wadden Sea. Mar Chem 171:10–20

    Article  Google Scholar 

  • Shinn EA, Reich CD, Hickey TD (2002) Seepage meters and Bernoulli’s revenge. Estuaries 25(1):126–132

    Article  Google Scholar 

  • Sholkovitz E, Herbold C, Charette M (2003) An automated dye-dilution based seepage meter for the time-series measurement of submarine groundwater discharge. Limnol Oceanogr Methods 1(1):16–28

    Article  Google Scholar 

  • Slomp CP, Van Cappellen P (2004) Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. J Hydrol 295(1–4):64–86

    Article  Google Scholar 

  • Smith CG, Cable JE (2008) Episodic high intensity mixing events in a subterranean estuary: effects of tropical cyclones. Limnol Oceanogr 53(2):666–674

    Article  Google Scholar 

  • Spiteri C, Slomp CP, Charette MA, Tuncay K, Meile C (2008) Flow and nutrient dynamics in a subterranean estuary (Waquoit Bay, MA, USA): field data and reactive transport modeling. Geochim Cosmochim Acta 72(14):3398–3412

    Article  Google Scholar 

  • Taniguchi M (2002) Tidal effects on submarine groundwater discharge into the ocean. Geophys Res Lett 29(12):1561

  • Taniguchi M, Fukuo Y (1993) Continuous measurements of ground-water seepage using an automatic seepage meter. Ground Water 31(4):675–679

    Article  Google Scholar 

  • Taniguchi M, Iwakawa H (2004) Submarine groundwater discharge in Osaka Bay, Japan. Limnology 5(1):25–32

    Article  Google Scholar 

  • Taniguchi M, Burnett WC, Cable JE, Turner JV (2002) Investigation of submarine groundwater discharge. Hydrol Process 16(11):2115–2129

    Article  Google Scholar 

  • Trezzi G, Garcia-Orellana J, Rodellas V, Santos-Echeandia J, Tovar-Sanchez A, Garcia-Solsona E, Masque P (2016) Submarine groundwater discharge: a significant source of dissolved trace metals to the north western Mediterranean Sea. Mar Chem 186:90–100

    Article  Google Scholar 

  • Tse KC, Jiao JJ (2008) Estimation of submarine groundwater discharge in Plover Cove, Tolo Harbour, Hong Kong by 222Rn. Mar Chem 111(3–4):160–170

    Article  Google Scholar 

  • Van Essen Instruments (2017) Water level dataloggers. https://www.vanessen.com/products/water-level. Accessed December 2017

  • Vuković M, Soro A (1992) Determination of hydraulic conductivity of porous media from grain-size composition. Water Resources, Littleton, CO

  • Wang X, Li H, Jiao JJ, Barry DA, Li L, Luo X et al. (2015) Submarine fresh groundwater discharge into Laizhou Bay comparable to the Yellow River flux. Sci Rep 5:8814

  • Windom HL, Moore WS, Niencheski LFH, Jahrike RA (2006) Submarine groundwater discharge: a large, previously unrecognized source of dissolved iron to the South Atlantic Ocean. Mar Chem 102(3-4):252–266

    Article  Google Scholar 

  • Xiang JN (1994) Improvements in evaluating constant-head permeameter test data. J Hydrol 162(1–2):77–97

    Article  Google Scholar 

  • Xiang J, Scanlon BR, Mullican WF, Chen L, Goldsmith RS (1997) A multistep constant-head borehole test to determine field saturated hydraulic conductivity of layered soils. Adv Water Resour 20(1):45–57

    Article  Google Scholar 

  • Xu F-L, Lam K, Dawson R, Tao S, Chen Y (2003) Long-term temporal-spatial dynamics of marine coastal water quality in the Tolo Harbor, Hong Kong, China. J Environ Sci (China) 16(1):161–166

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the technicians Dr. Mike Chio and Mr. Eddie Ho for their help in installation the water-level Cera-Divers and the field work. Appreciation is also given to the associate editor and three anonymous reviewers for their endeavors in reviewing this paper.

Funding

This study was supported by “HKU Shenzhen Institute of Research and Innovation”, “Project Submarine Groundwater Discharge in South China Sea and its Implications on Nutrient Flux (no. 41372261) supported by National Natural Science Foundation of China” and “Research Grants Council of the Hong Kong SAR (no. C6012–15G)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiu Jimmy Jiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Jiao, J.J. & Cheng, H.K. Tracing submarine groundwater discharge flux in Tolo Harbor, Hong Kong (China). Hydrogeol J 26, 1857–1873 (2018). https://doi.org/10.1007/s10040-018-1736-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-018-1736-z

Keywords

Navigation