Skip to main content

Advertisement

Log in

Mapping of groundwater prospective zones integrating remote sensing, geographic information systems and geophysical techniques in El-Qaà Plain area, Egypt

Cartographie de zones à potentiel aquifère à l’aide de la télédétection, des systèmes d’information géographique et des techniques géophysiques dans la région de la plaine El-Qaà, Egypte

Mapeo de potenciales zonas de agua subterránea integrando la teledetección, sistemas de información geográfica y técnicas geofísicas en la llanura El-Qaà, Egipto

结合遥感、地理信息系统及地球物理技术对埃及El-Qaà平原区地下水前景带进行绘图

Mapeamento de zonas de prospecção de águas subterrâneas integrando sensoriamento remoto, sistema de informação geográfica e técnicas geofísicas na área da planície de El-Qaà, Egito

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The geospatial mapping of groundwater prospective zones is essential to support the needs of local inhabitants and agricultural activities in arid regions such as El-Qaà area, Sinai Peninsula, Egypt. The study aims to locate new wells that can serve to cope with water scarcity. The integration of remote sensing, geographic information systems (GIS) and geophysical techniques is a breakthrough for groundwater prospecting. Based on these techniques, several factors contributing to groundwater potential in El-Qaà Plain were determined. Geophysical data were supported by information derived from a digital elevation model, and from geologic, geomorphologic and hydrologic data, to reveal the promising sites. All the spatial data that represent the contributing factors were integrated and analyzed in a GIS framework to develop a groundwater prospective model. An appropriate weightage was specified to each factor based on its relative contribution towards groundwater potential, and the resulting map delineates the study area into five classes, from very poor to very good potential. The very good potential zones are located in the Quaternary deposits, with flat to gentle topography, dense lineaments and structurally controlled drainage channels. The groundwater potential map was tested against the distribution of groundwater wells and cultivated land. The integrated methodology provides a powerful tool to design a suitable groundwater management plan in arid regions.

Résumé

La cartographie géospatiale de zones à potentiel aquifère est. essentielle pour satisfaire les besoins en eau des habitants et de l’agriculture dans des régions arides telle que la région d’El-Qaà, Péninsule du Sinai, Egypte. L’étude vise à identifier des secteurs pour forer de nouveaux puits pouvant pallier à la rareté de l’eau. L’intégration de la télédétection, des systèmes d’information géographique (SIG) et des techniques géophysiques constitue une avancée dans la prospection de l’eau souterraine. Sur la base de ces techniques, plusieurs paramètres d’évaluation du potentiel en eau souterraine de la plaine El-Qaà ont été identifiés. Afin de mettre en évidence des sites prometteurs, les données géophysiques se sont appuyées sur des informations déduites d’un modèle altimétrique numérique, et sur des données géologiques, géomorphologiques et hydrologiques. Toutes les données spatiales qui représentent les facteurs contributifs ont été intégrées et analysées dans le cadre d’un SIG pour élaborer un modèle prospectif des eaux souterraines. Une pondération appropriée a été appliquée à chaque facteur sur la base de sa contribution relative vis à vis du potentiel en eau souterraine, et la carte résultante permet de délimiter l’aire d’étude en 5 classes de très faible à très bon potentiel. Les zones à très bon potentiel sont localisées dans les dépôts quaternaires présentant une topographie plate ou douce, des linéaments denses et des chenaux structuraux de drainage. La carte du potentiel en eaux souterraines a été testée en la confrontant à la distribution des puits et terres cultivées. La méthodologie intégrée fournit un outil puissant pour concevoir un plan de gestion de l’eau souterraine adapté aux régions arides.

Resumen

El mapeo geoespacial de potenciales zonas de aguas subterráneas es esencial para apoyar las necesidades de los habitantes locales y las actividades agrícolas en regiones áridas, como es el área de El-Qaà, Península del Sinaí, Egipto. El estudio tiene como objetivo localizar nuevos pozos que puedan servir para afrontar la escasez de agua. La integración de la teledetección, los sistemas de información geográfica (SIG) y las técnicas geofísicas es un avance para la prospección de agua subterránea. En base a estas técnicas, se determinaron varios factores que contribuyen a conocer el potencial de agua subterránea en la llanura de El-Qaà. Los datos geofísicos fueron apoyados por la información derivada de un modelo de elevación digital, para revelar los sitios más promisorios a partir de datos geológicos, geomorfológicos e hidrológicos. Todos los datos espaciales que representan estos factores se integraron y analizaron en un marco SIG para desarrollar un modelo del potencial del agua subterránea. Se especificó un peso apropiado para cada factor, basado en su contribución relativa al potencial del agua subterránea, y el mapa resultante delimita el área de estudio en cinco clases, desde un potencial muy pobre hasta muy bueno. Las potenciales zonas muy buenas se localizan en los depósitos cuaternarios, con topografía plana a suave, lineamientos densos y canales de drenaje estructuralmente controlados. El mapa de potencial de aguas subterráneas se probó contra la distribución de pozos de agua subterránea y tierras cultivadas. La metodología integrada proporciona una herramienta poderosa para diseñar un plan adecuado de manejo del agua subterránea en regiones áridas.

摘要

地下水前景带地理空间绘图对于维持干旱地区诸如埃及西奈半岛El-Qaà平原区当地居民的需求至关重要。本研究目的就是为应对水匮乏对新井进行定位。遥感、地理信息系统及地球物理技术的结合是地下水勘探的一项突破。基于这些技术,确定了El-Qaà平原影响地下水潜力的几个因素。地球物理数据得到来源于数字海拔模型及地质、地貌和水文数据的支持,并揭示了有希望的区域。所有代表这些影响因素的空间数据整合在一起,并在GIS框架内进行分析,建立了地下水前景模型。根据每个因素对地下水潜力的影响程度确定了其合适的权重,据此绘制的图件把研究区从非常差到非常好分为五类。非常好的潜力带位于第四纪沉积层,地势平坦到稍微崎岖、沉积致密、构造上受排水渠道控制。针对地下水井和耕地的分布情况对地下水潜力图进行了检验。综合方法为干旱地区设计合适的地下水管理计划提供了强有力的工具。

Resumo

O mapeamento geoespacial das zonas de prospecção de águas subterrâneas é essencial para suprir a necessidade dos habitantes locais e atividade agrícolas em regiões áridas, como na área de El-Qaà, Península do Sinai, Egito. O estudo buscou localizar novos poços que possam servir para lidar com a escassez hídrica. A integração do sensoriamento remoto, sistemas de informação geográficas (SIG) e técnicas geofísicas é um avanço para prospecção de águas subterrâneas. Baseado nessas técnicas, foram determinados vários fatores que contribuem para a potencialidade das águas subterrâneas na planície de El-Qaà. Dados geofísicos foram respaldados por informação derivadas de um modelo digital de elevação e de dados geológicos, geomorfológicos e hidrológicos para revelar as áreas mais promissoras. Todos os dados espaciais que representam os fatores contribuintes foram integrados e analisados em um SIG para desenvolver um modelo prospectivo das águas subterrâneas. Uma ponderação adequada foi especificada para cada fator baseado na contribuição relativa para o potencial das águas subterrâneas, e o mapa resultante definiu o estudo de cinco classes, do potencial muito pobre ao excelente. As zonas de potencial excelente localizam-se nos depósitos Quaternários, com topografia plana a suave, lineamentos densos e canais de drenagem estruturalmente controlados. O mapa do potencial da água subterrânea foi testado em contraste com a distribuição de poços de águas subterrâneas e áreas agrícolas. A metodologia integrada fornece uma ferramenta poderosa para projetar um plano adequado de manejo de águas subterrâneas em regiões áridas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abuzied SM (2016) Groundwater potential zone assessment in Wadi Watir area, Egypt using radar data and GIS. Arab J Geosci 9(7):1–20. doi:10.1007/s12517-016-2519-2

    Article  Google Scholar 

  • Abuzied SM, Ibrahim SK, Kaiser MF, Seleem TA (2016a) Application of remote sensing and spatial data integrations for mapping porphyry copper zones in Nuweiba area, Egypt. Int J Sig Process Syst 4(2):102–108. doi:10.12720/ijsps.4.2.102-108

  • Abuzied SM, Yuan M, Ibrahim SK, Kaiser MF, Saleem TA (2016b) Geospatial risk assessment of flash floods in Nuweiba area, Egypt. J Arid Environ 133:54–72. doi:10.1016/j.jaridenv.2016.06.004

    Article  Google Scholar 

  • Abuzied SM, Ibrahim SK, Kaiser MF, Saleem TA (2016c) Geospatial susceptibility mapping of earthquake-induced landslides in Nuweiba area, Gulf of Aqaba, Egypt. J Mt Sci 13(7):1286–1303. doi:10.1007/s11629-015-3441-x

    Article  Google Scholar 

  • Ahmed M, Sauck W, Sultan M, Yan E, Soliman F, Rashed M (2014) Geophysical constraints on the Hydrogeologic and structural settings of the Gulf of Suez rift-related basins: case study from the El Qaa Plain, Sinai, Egypt. Surv Geophys 35:415–430. doi:10.1007/s10712-013-9259-6

    Article  Google Scholar 

  • Azab AA, El-Khadargy AA (2013) 2.5-D gravity/magnetic model studies in Sahl el-Qaà area: Southwestern Sinai, Egypt. Pur App Geophys 170:2207–2229. doi:10.1007/s00024-013-0650-5

  • Baranov V, Naudy H (1964) Numerical calculation of the formula of reduction to the magnetic pole. Geophys J 29:67–79. doi:10.1190/1.1439334

    Article  Google Scholar 

  • Bonham-Carter GF (1994) Geographic information systems for geoscientists: modeling with GIS. Comp Meth Geosci 13:398 http://ci.nii.ac.jp/naid/10016876159/#cit. Accessed May 2017

  • Carmichael RS, Henry G (1977) Gravity exploration for groundwater and bedrock topography in glaciated areas. Geophysic 42(4):850–859

    Article  Google Scholar 

  • Chowdhury A, Jha MK, Chowdary VM (2010) Delineation of groundwater recharge zones and identification of artificial recharge sites in West Medinipur district, West Bengal, using RS, GIS and MCDM techniques. Environ Ear Sci 59(6):1209–1222. doi:10.1007/s12665-009-0110-9

    Article  Google Scholar 

  • Conoco (1982) Getchell Mine Pit Water Volumes. Inter-office Communication from J.T. McDonough, Conoco, Houston, TX

  • Dames and Moore (1985) Sinai development study, phase 1, Final report: Water supplies and coast, vol V. Report submitted to the Advisory Committee for Reconstruction, Ministry of Development, Cairo, 147 pp

  • Dayan U, Abramski R (1983) Heavy rain in the Middle East related to unusual jet stream properties. Bull Am Meteorol Soc 64:1138–1140. doi:10.1175/1520-0477(1983)064<1138:HRITME>2.0.CO;2

    Article  Google Scholar 

  • Edet A, Okereke S, Teme C, Esu O (1998) Application of remote sensing data to groundwater exploration: a case study of the Cross River state, southeastern Nigeria. Hydrogeol J 6(3):394–404. doi:10.1007/s100400050162

    Article  Google Scholar 

  • El Naqa A, Hammouri N, Ibrahim K, El-Taj M (2009) Integrated approach for groundwater exploration in Wadi Araba using remote sensing and GIS. Jordan J Civ Eng 3(3):229–243. https://eis.hu.edu.jo/deanshipfiles/pub101172451.pdf. Accessed May 2017

  • EL Shamy I, EL Rayes A (1992) Hydrogeological assessment of Saint Catherine area, south Sinai. In: Proceeding of the 3rd Conf. Geol. Sinai Develop., Ismalia, Egypt, 1992, pp 71–76. https://www.researchgate.net/profile/Ahmed_El-Rayes/publication/244483364_Hydrogeologic_Assessment_of_St_Catherine_area_South_Sinai/links/5692428108ae0f920dcd5334.pdf. Accessed May 2017

  • El-Nahry AH, Saleh AM (2004) Influence of seasonal flashfloods on terrain and soils of El-Qaà Plain, south Sinai, Egypt. Egyp J Soi Sci 44(4):489. http://www.isprs.org/publications/related/iSRSE/html/papers/988.pdf. Accessed February 2017

  • Elwa HH, El Qaddah AA (2011) Groundwater potentiality mapping in the Sinai Peninsula, Egypt, using remote sensing and GIS watershed-based modeling. Hydrogeol J 19:613–628. doi:10.1007/s10040-011-0703-8

    Article  Google Scholar 

  • Fetter CW (1994) Applied hydrogeology, 4th edn. Prentice Hall, Englewood Cliffs, NJ, pp 543–559

    Google Scholar 

  • Gabr S, Ghulam A, Kusky T (2010) Detecting areas of high-potential gold mineralization using ASTER data. Ore Geol Rev 38(1):59–69. doi:10.1016/j.oregeorev.2010.05.007

    Article  Google Scholar 

  • Ganapuram S, Kumar GV, Krishna IM, Kahya E, Demirel MC (2009) Mapping of groundwater potential zones in the Musi basin using remote sensing data and GIS. Advan Eng Softw 40(7):506–518. doi:10.1016/j.advengsoft.2008.10.001

    Article  Google Scholar 

  • General Petroleum Company (1986) The Bouguer anomaly map of Sinai Peninsula. General Petroleum, Cairo, Egypt

  • Geological Survey of Israel (1980) The aeromagnetic reduced to the north pole map of Sinai Peninsula. Geological Survey of Israel, Jerusalem

  • Geosoft (2008) Oasis Montaj 7.0.1. Geosoft package software. Geosoft, Toronto

    Google Scholar 

  • Gilboa Y (1980) Post Eocene clastics distribution along the El-Qaà Plain, southern Sinai. Israel J Earth Sci 29:197–206

    Google Scholar 

  • Górski J, Ghodeif K (2000) Salinization of shallow water aquifer in El-Qaa coastal plain, Sinai, Egypt. Nicholas Copernicus University, Toruń, Poland, pp 63–71

  • Griffin WR (1949) Residual gravity in theory and practice. Geophys J 14(1):39–56. doi:10.1190/1.1437506

    Article  Google Scholar 

  • Hammad FA (1980) Geomorphological and hydrological aspects of Sinai Peninsula. Annal Geol Surv Egypt X:807–817

  • Harinarayana P, Gopalakrishna G, Balasubramanian S (2002) A remote sensing data for groundwater development and management in Keralapura watersheds of Cauvery basin, Karnataka, Indian. India Mineralog 34(2):11–17. http://eprints.uni-mysore.ac.in/id/eprint/11989. Accessed May 2017

  • Horton RE (1945) Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Geol Soc Am Bull 5:275–370. doi:10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2

    Article  Google Scholar 

  • Houhoulis PF, Michener WK (2000) Detecting wetland change: a rule-based approach using NWI and SPOT-XS data. Photogram Eng Remote Sens 66(2):205–211 http://info.asprs.org/publications/pers/2000journal/february/2000_feb_205-211.pdf. Accessed February 2017

  • Jaban International Cooperation Agency (JICA) (1999) South Sinai groundwater resources study in the Arab Republic of Egypt. Main report, Pacific Consult. and Sandy Consult., Tokyo

    Google Scholar 

  • Jones-Cecil M (1995) Structural controls of Holocene reactivation of the Meers fault, southwestern Oklahoma, from magnetic studies. Geol Soc Am Bull 107:98–112. doi:10.1130/0016 7606

    Article  Google Scholar 

  • Lahti I, Karinen T (2010) Tilt derivative multiscale edges of magnetic data. Leading Edge 29:24–29. doi:10.1190/1.3284049

    Article  Google Scholar 

  • Lowrie W (2007) Fundamentals of geophysics, 2nd edn. Cambridge University Press, New York, 381 pp

    Book  Google Scholar 

  • Madrucci V, Taioli F, de Araújo CC (2008) Groundwater favorability map using GIS multicriteria data analysis on crystalline terrain, Sao Paulo state, Brazil. Hydrol J 357(3):153–173. doi:10.1016/j.jhydrol.2008.03.026

    Article  Google Scholar 

  • Magesh NS, Chandrasekar N, Soundranayagam JP (2012) Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geosci Frontiers 3(2):189–196. doi:10.1016/j.gsf.2011.10.007

    Article  Google Scholar 

  • Meshref MA, El-Kattan EMI (1989) Tectonic pattern of El-Qaá’plain, Sinai using aeromagnetic data, Proceeding 2 Conference of Sinai Development, Ismailia, pp 33–42

  • Miller HG, Singh V (1994) Potential field tilt: a new concept for location of potential field sources. J Appl Geophys 32:213–217. doi:10.1016/0926-9851(94)90022-1

    Article  Google Scholar 

  • Mohamed L, Sultan M, Ahmed M, Zaki A, Sauck W, Soliman F, Yan E, Elkadiri R, Abouelmagd A (2015) Structural controls on groundwater flow in basement terrains: geophysical, remote sensing, and field investigations in Sinai. Surv Geophys 36(5):717–742. doi:10.1007/s10712-015-9331-5

    Article  Google Scholar 

  • Morgan JM, Lesh AM (2005) Developing landform maps using ESRI’S Model-Builder. ESRI International User Conference, San Diego, CA, July 2005

  • Moustafa AM (1992) Structure setting of the Sidri-Firan area, eastern side of the Suez Rift. Earth Sci Series 6, MERC, Ain Shams Univ., Cairo, pp 44–50

  • Muralidhar M, Raju KR, Raju KS, Prasad JR (2000) Remote sensing applications for the evaluation of water resources in rainfed area, Warangal district, Andhra Pradesh. Indian Mineralog 34:33–40

    Google Scholar 

  • Murty BVS, Raghavan VK (2002) The gravity method in groundwater exploration in crystalline rocks: a study in the peninsular granitic region of Hyderabad, India. Hydrogeol J 10:307–321. doi:10.1007/s10040-001-0184-2

    Article  Google Scholar 

  • Nabighian MN, Grauch VJS, Hansen RO, LaFehr TR, Li Y, Peirce JW, Phillips JD, Ruder ME (2005) The historical development of the magnetic method in exploration. Geophysics 70(6):33ND–61ND. doi.org/10.1190/1.2133784

  • Naidu PS, Mathew MP (1998) Analysis of geophysical potential fields. Elsevier, Amsterdam, 298 pp

    Google Scholar 

  • Noweir A, EL Shishtawy A (1996) Structure setting and stratigraphy of the area east of El-Qaà Plain, southwestern Sinai, Egypt. J Geol 40(1):1–22

    Google Scholar 

  • Obiefuna GI, Sheriff A (2011) Assessment of shallow ground water quality of Pindiga Gombe area, Yola area, NE, Nigeria for irrigation and domestic purposes. J Environ Earth Sci 3(2):131–141

    Google Scholar 

  • Overmeeren VRA (1980) Tracing by gravity of a narrow buried graben structure, detected by seismic refraction, for ground-water investigations in North Chile. Geophysic Prospec 28(3):392–407

    Article  Google Scholar 

  • Robinson C, El-Baz F, Singhory V (1999) Subsurface imaging by RADARSAT: comparison with Landsat TM data and implications for groundwater in the Selima area, northwestern Sudan. Remote Sens Abs 25(3):45–76

    Google Scholar 

  • Said R (1962) The geology of Egypt. Elsevier, Amsterdam, 377 pp

    Google Scholar 

  • Salem A, Williams S, Fairhead JD, Ravat D, Smith R (2007) Tilt-depth method: a simple depth estimation method using first order magnetic derivatives. Leading Edge 26:1502–1505. doi:10.1190/1.2821934

    Article  Google Scholar 

  • Saltus RW, Blakely RJ (2011) Unique geologic insights from “non-unique” gravity and magnetic interpretation. GSA Today 21(12):4–11. doi:10.1130/G136A

    Article  Google Scholar 

  • Sander P, Chesley MM, Minor TB (1996) Groundwater assessment using remote sensing and GIS in a rural groundwater project in Ghana: lessons learned. Hydrogeol J 4(3):40–49. doi:10.1007/s100400050086

    Article  Google Scholar 

  • Saraf AK (1999) IRS-1C-LISS-III and PAN data fusion: an approach to improve remote sensing based mapping techniques. Int J Remote Sens 20(10):1929–1934. doi:10.1080/014311699212272

    Article  Google Scholar 

  • Saraf AK, Choudhury PR (1998) Integrated remote sensing and GIS for groundwater exploration and identification of artificial recharge sites. Int J Remote Sens 19(10):1825–1841. doi:10.1080/014311698215018

    Article  Google Scholar 

  • Saraf AK, Choudhury PR, Roy B, Sarma B, Vijay S, Choudhury S (2004) GIS based surface hydrological modelling in identification of groundwater recharge zones. Int J Remote Sens 25(24):5759–5770. doi:10.1080/0143116042000274096

    Article  Google Scholar 

  • Sener A, Davraz A, Ozcelik M (2005) An integration of GIS and remote sensing in groundwater investigations: a case study in Burdur, Turkey. Hydrogeol J 13:826–834. doi:10.1007/s10040-004-0378-5

    Article  Google Scholar 

  • Shahid S, Nath SK (2002) GIS integration of remote sensing and electrical sounding data for hydrogeological exploration. J Spat Hydro 2(1). http://www.spatialhydrology.net/index.php/JOSH/article/view/5. Accessed February 2017

  • Sherief Y (2008) Flash floods and their effects on the development in El Qaa Plain area in south Sinai, Egypt: a study in applied geomorphology using GIS and remote sensing. PhD Thesis, Johannes Gutenberg-Universität Mainz, Germany, 255 pp. http://ubm.opus.hbz-nrw.de/volltexte/2008/1756/. Accessed May 2017

  • Solomon S (2003) Groundwater study using remote sensing and geographic information systems (GIS) in the central highlands of Eritrea. PhD Thesis, Royal Institute of Technology, Stockholm, Sweden

  • Solomon S, Quiel F (2006) Groundwater study using remote sensing and geographic information systems (GIS) in the central highlands of Eritrea. Hydrogeol J 14(6):1029–1041. doi:10.1007/s10040-005-0477-y

    Article  Google Scholar 

  • Srivastava PK, Bhattacharya AK (2006) Groundwater assessment through an integrated approach using remote sensing, GIS and resistivity techniques: a case study from a hard rock terrain. Int J Remote Sens 27(20):4599–4620. doi:10.1080/01431160600554983

    Article  Google Scholar 

  • Sultan A, Abdel Rahman N, Ramadan TM, Salem SM (2013) The use of geophysical and remote sensing data analysis in the groundwater assessment of El Qaa Plain, South Sinai, Egypt. Aust J Basic Appl Sci 7(1):394–400

    Google Scholar 

  • Sultan AS, Mohameden MI, Santos MF (2009) Hydrogeophysical study of the El Qaa Plain, Sinai, Egypt. Bull Eng Geol Environ 68:525–537. doi:10.1007/s10064-009-0216-z

    Article  Google Scholar 

  • Süzen ML, Toprak V (1998) Filtering of satellite images in geological lineament analyses: an application to a fault zone in central Turkey. Int J Remote Sens 19 (6):1101–1114. doi:10.1080/014311698215621

  • Thomas A, Sharma PK, Sharma MK, Sood Anil (1999) Hydrogeomorphological mapping in assessing groundwater by using remote sensing data case study in Lehra Gage Block, Sangrur district, Punjab. J India Soc Remote Sens 27:31–42. doi:10.1007/BF02990773

  • Thornbury WD (1985) Principles of geomorphology. Wiley, New Delhi, India

    Google Scholar 

  • Tweed SO, Leblanc M, Webb JA, Lubczynski MW (2007) Remote sensing and GIS for mapping groundwater recharge and discharge areas in salinity prone catchments, southeastern Australia. Hydrogeol J 15(1):75–96. doi:10.1007/s10040-006-0129-x

    Article  Google Scholar 

  • Verduzco B, Fairhead JD, Green CM, MacKenzie C (2004) New insights into magnetic derivatives for structural mapping. Leading Edge 23:116–119. doi:10.1190/1.1651454

    Article  Google Scholar 

  • Wahid A, Madden M, Khalaf F, Fathy I (2009) Land suitability scenarios for arid coastal plains using GIS modeling: southwestern Sinai Coastal Plain, Egypt. J Urban Environ Eng 3(2):73–83. doi:10.4090/juee.2013.v3n2

Download references

Acknowledgements

The authors wish to express their appreciation to the associate editor of Hydrogeology Journal and two anonymous reviewers, for constructive and fruitful criticism on an earlier draft of the manuscript, and to Sue Duncan (technical editorial advisor) for her assistance on the last draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara M. Abuzied.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abuzied, S.M., Alrefaee, H.A. Mapping of groundwater prospective zones integrating remote sensing, geographic information systems and geophysical techniques in El-Qaà Plain area, Egypt. Hydrogeol J 25, 2067–2088 (2017). https://doi.org/10.1007/s10040-017-1603-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-017-1603-3

Keywords

Navigation