Skip to main content

Advertisement

Log in

Determining the groundwater potential recharge zone and karst springs catchment area: Saldoran region, western Iran

Détermination de la zone potentielle de recharge des eaux souterraines et des bassins d’alimentation de sources karstiques: région de Saldoran, Ouest de l’Iran

Determinación de la zona potencial de recarga de agua subterránea y del área de captación de manantiales kársticos: región de Saldoran, oeste de Irán

确定地下水潜在补给带及岩溶泉汇水区:伊朗西部Saldoran地区

Determinação da zona de recarga potencial das águas subterrâneas e área de nascentes de bacias cársticas: região de Saldoran, oeste do Irã

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Assessing the groundwater recharge potential zone and differentiation of the spring catchment area are extremely important to effective management of groundwater systems and protection of water quality. The study area is located in the Saldoran karstic region, western Iran. It is characterized by a high rate of precipitation and recharge via highly permeable fractured karstic formations. Pire-Ghar, Sarabe-Babaheydar and Baghe-rostam are three major karstic springs which drain the Saldoran anticline. The mean discharge rate and electrical conductivity values for these springs were 3, 1.9 and 0.98 m3/s, and 475, 438 and 347 μS/cm, respectively. Geology, hydrogeology and geographical information system (GIS) methods were used to define the catchment areas of the major karstic springs and to map recharge zones in the Saldoran anticline. Seven major influencing factors on groundwater recharge rates (lithology, slope value and aspect, drainage, precipitation, fracture density and karstic domains) were integrated using GIS. Geology maps and field verification were used to determine the weights of factors. The final map was produced to reveal major zones of recharge potential. More than 80 % of the study area is terrain that has a recharge rate of 55–70 % (average 63 %). Evaluating the water budget of Saldoran Mountain showed that the total volume of karst water emerging from the Saldoran karst springs is equal to the total annual recharge on the anticline. Therefore, based on the geological and hydrogeological investigations, the catchment area of the mentioned karst springs includes the whole Saldoran anticline.

Résumé

L’évaluation de la zone potentielle de recharge des eaux souterraines et la différenciation des bassins d’alimentation des sources sont extrêmement importantes pour une gestion efficace des systèmes aquifères et la protection de la qualité de l’eau. La zone d’étude est localisé dans la région karstique de Saldoran, dans l’ouest de l’Iran. Elle est caractérisée par une intensité élevée de précipitation et de recharge via des formations karstiques fracturées hautement perméables. Pire-Ghar, Sarabe-Babaheydar et Baghe-Rostam sont les trois principales sources karstiques qui drainent l’anticlinal de Saldoran. Le débit moyen et les valeurs de conductivité électrique de ces sources sont 3, 1.9 et 0.98 m3/s, et 475, 438 et 347 μS/cm, respectivement. Les méthodes géologiques, hydrogéologiques et relatives au système d’information géographique (SIG) ont été utilisées pour définir les bassins d’alimentation des principales sources karstiques et pour cartographier les zones de recharge dans l’anticlinal de Saldoran. Sept principaux facteurs influençant l’intensité de la recharge des eaux souterraines (lithologie, pente et aspect, drainage, précipitation, densité de fracture et domaines karstiques) ont été intégrés dans le SIG. Les cartes géologiques et des vérifications de terrain ont été utilisées pour déterminer la pondération des facteurs. La carte résultante a été produite afin de déterminer les zones principales de recharge potentielle. Plus de 80 % de la zone d’étude est un terrain dont le taux de recharge est de 55–70 % (63 % en moyenne). L’évaluation du bilan hydrique de la montagne de Saldoran a montré que le volume total de l’eau karstique émergeant des sources karstiques de Saldoran est égal à la recharge annuelle totale de l’anticlinal. Par conséquent, sur la base des études géologiques et hydrogéologiques, les bassins d’alimentation des sources karstiques mentionnées couvrent l’ensemble de l’anticlinal de Saldoran.

Resumen

La evaluación de la zona potencial de recarga de agua subterránea y la diferenciación de la zona de captación de manantiales son extremadamente importantes para la gestión eficaz de los sistemas de aguas subterráneas y la protección de la calidad del agua. El área de estudio se encuentra en la región kárstica de Saldoran, oeste de Irán. Se caracteriza por una alta tasa de precipitación y por una recarga a través de formaciones kársticas fracturadas altamente permeables. Pire-Ghar, Sarabe-Babaheydar y Baghe-Rostam son tres grandes manantiales kársticos que drenan el anticlinal Saldoran. El caudal de descarga media y los valores de conductividad eléctrica de estos manantiales fueron de 3, 1.9 y 0.98 m3/s, y 475, 438 y 347 μS/cm, respectivamente. Se utilizaron métodos geológicos, hidrogeológicos y un sistema de información geográfica (GIS) para definir las áreas de captación de los principales manantiales kársticos y para mapear zonas de recarga en el anticlinal de Saldoran. Los siete principales factores que influyen sobre las tasas de recarga de agua subterránea (litología, valor y características de la pendiente, drenaje, precipitación, densidad de fracturas y dominios kársticos) se integraron usando un SIG. Se utilizaron mapas geológicos y la verificación de campo para determinar el peso de los factores. El mapa final fue producido para revelar las principales zonas potenciales de recarga. Más del 80 % del área de estudio es un terreno que tiene una tasa de recarga de 55–70 % (promedio 63 %). La evaluación del balance hídrico de Saldoran Mountain mostró que el volumen total de agua que emerge de los manantiales kársticos de Saldoran es igual a la recarga anual total en el anticlinal. Por lo tanto, en base a las investigaciones geológicas e hidrogeológicas, el área de captación de los mencionados manantiales kársticos incluye a la totalidad del anticlinal de Saldoran.

摘要

评价地下水潜在补给带及泉汇水区的差异化对于有效管理地下水系统及水质保护极为重要。研究区位于西朗西部Saldoran岩溶区。特点是降水量大,通过透水性高的断裂岩溶地层进行补给。Pire-Ghar, Sarabe-Babaheydar和Baghe-rostam是三个主要的岩溶泉,都向Saldoran背斜排水。这些泉的平均排泄量及电导率分别为3、1.9和0.98 m3/s及475、438和347μS/cm。采用地质、水文地质及地理信息系统方法对主要岩溶泉的汇水区进行了定义,绘制了Saldoran背斜的补给区。利用地理信息系统对影响地下水补给量的七个主要因子(岩性、边坡值及边坡外貌、排水面积、降水量、断裂密度及岩溶域)进行了整合。利用地质图和现场验证确定了因子的权重。绘制了最终图件,揭示了主要潜在补给带。研究区80%以上为阶地,补给率为55–70 %(平均63%)。Saldoran山水平衡评估结果显示,Saldoran岩溶泉的岩溶水总量等于背斜上年补给总量。因此,根据地质和水文地质调查结果,上述岩溶泉的汇水区包括整个Saldoran背斜。

Resumo

Avaliar a zona de recarga potencial das águas subterrâneas e a diferenciação de área de nascentes de bacias é extremamente importante para o gerenciamento eficaz dos sistemas de águas subterrâneas e proteção da qualidade da água. A área de estudo está localizada na região cárstica de Saldoran, oeste do Irã. Ela é caracterizada por uma alta taxa de precipitação e recarga por causa das formações cársticas fraturadas de alta permeabilidade. Pire-Ghar, Sarabe-Babaheydar e Baghe-rostam são as três maiores nascentes cársticas que drenam o anticlinal Saldoran. A taxa de recarga média e os valores de condutividade elétrica dessas nascentes foram 3, 1.9 e 0.98 m3/s, e 475, 438 e 347 μS/cm, respectivamente. Métodos de geologia, hidrogeologia e sistemas de informação geográficas (SIG) foram utilizados para definir as áreas de captação das maiores nascentes cársticas e mapear as zonas de recarga do anticlinal Saldoran. Os sete principais fatores de influência sobre as taxas de recarga de águas subterrâneas (litologia, valor e aspecto da declividade, drenagem, precipitação, densidade de fratura e domínios cársticos) foram integrados utilizando SIG. Mapas geológicos e verificação a campo foram utilizados para determinar os pesos dos fatores. O mapa final foi produzido para revelar as maiores zonas potenciais de recarga. Mais de 80 % da área de estudo é de terreno que possui taxa de recarga de 55–70 % (média de 63 %). Avaliar o balanço hídrico da Montanha Saldoran demonstrou que o volume total de água cársticas emergindo das nascentes cársticas do Saldoran é igual a recarga anual total no anticlinal. Portanto, baseado em investigações geológicas e hidrogeológicas, a área de captação das nascentes cársticas inclui todo o anticlinal Saldoran.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Alavi M (2004) Regional stratigraphy of the Zagros fold-thrust belt of Iran and its pro-foreland evolution. Am J Sci 304:1–20

    Article  Google Scholar 

  • Bakalowicz M (2005) Karst groundwater: a challenge for new resources. Hydrogeol J 13:148–160

    Article  Google Scholar 

  • Bierwirth PN, Welsh WD (2000) Delineation of recharge beds in the Great Artesian Basin using airborne gamma-radiometrics and satellite remote sensing. Report for the National Landcare Program. Bureau of Rural Sciences, Canberra, Australia, 33 pp

    Google Scholar 

  • Bonacci O, Andric I (2015) Karst spring catchment: an example from Dinaric karst. Environ Earth Sci. doi:10.1007/s12665-015-4644-8

    Google Scholar 

  • Bonacci O, Jukić D, Ljubenkov I (2006) Definition of catchment area in karst: case of the rivers Krĉić and Krka, Croatia. Hydrol Sci J 51(4):682–699

    Article  Google Scholar 

  • Bordenave ML (2008) The origin of Permo-Triassic gas accumulations in the Iranian Zahros fold belt and contiguous offshore areas: a review of the Paleozoic petroleum system. J Petrol Geol 31:3–42

    Article  Google Scholar 

  • Falcon NL (1967) Southern Iran, Zagros Mountains. In: Spencer AM (ed) Mesozoic-Cenozoic orogenic belts: data for Orogenic studies. Geol Soc Lond 4:199–211

  • Fetter CW (1999) Contaminant hydrogeology, 2nd edn. Prentice-Hall, Englewood Cliffs, NJ

  • Ford DC, Williams PW (2007) Karst geomorphology and hydrogeology, 2nd edn. Wiley, Chichester, UK, 576 pp

    Book  Google Scholar 

  • Foster S, Garduno H, Evans R, Olson D, Tian Y, Zhang W, Han Z (2004) Quaternary aquifer of the North China Plain: assessing and achieving groundwater resource sustainability. Hydrogeol J 12:81–93

    Article  Google Scholar 

  • Freeze FA, Cherry JA (1979) Ground water. Prentice, Englewood Cliffs, NJ

  • James GA, Wyned JG (1965) Stratigraphic nomenclature of Iranian oil consortium agreement area. Am Assoc Petrol Geol Bull 49:2188–2245

    Google Scholar 

  • Krishnamurthy J, Venkatesa Kumar N, Jayaraman V, Manivel M (1996) An approach to demarcate groundwater potential zones through remote sensing and geographic information system. Int J Remote Sens 17:1867–1884

    Article  Google Scholar 

  • Leblanc M, Leduc C, Razack M, Lemoalle J, Dagorne D, Mofor L (2003) Application of remote sensing and GIS for groundwater modeling of large semiarid areas: example of the Lake Chad Basin, Africa. In: Hydrology of Mediterranean and Semiarid Regions Conference, Montpieller, France. Red Books Series 278, IAHS, Wallingford, UK, pp 186–192

  • Miliaresis GC (2001) Geomorphometric mapping of Zagros ranges at regional scale. Comput Geosci 27:775–786

    Article  Google Scholar 

  • Murthy KSR (2000) Groundwater potential in a semi-arid region of Andhra Pradesh: a geographical information system approach. Int J Remote Sens 21:1867–1884

    Article  Google Scholar 

  • Raeisi E, Karami G (1996) The governing factors of the physical and hydrochemical characteristics of karst springs. Carbonates Evaporates 2:162–168

    Article  Google Scholar 

  • Raeisi E, Karami G (1997) Hydrodynamic of Berghan karst spring as indicators of aquifer characteristics. J Cave Karst Stud 59:112–118

    Google Scholar 

  • Saraf AK, Choudhury PR (1998) Integrated remote sensing and GIS for groundwater exploration and identification of artificial recharge sites. Int J Remote Sens 19:1825–1841

    Article  Google Scholar 

  • Sener E, Davraz A, Ozcelik M (2005) An integration of GIS and remote sensing in groundwater investigations: a case study in Burdur, Turkey. Hydrogeol J 13:826–834

    Article  Google Scholar 

  • Shaban A (2003) Studying the hydrogeology of Occidental Lebanon: utilization of remote sensing. Etude de l’hydrogéologie du Liban occidental: Utilisation de la télédétection. PhD Thesis, Université Bordeaux 1, Bordeaux, France, 202 pp

  • Shaban A, Khawlie M, Abdallah C (2006) Use of remote sensing and GIS to determine recharge potential zone: the case of Occidental Lebanon. Hydrogeol J 14:433–443

    Article  Google Scholar 

  • Stocklin J, Setudehnia A (1977) Stratigraphic Lexicon of Iran. Geological Survey of Iran, Tehran, 376 pp

    Google Scholar 

  • Talbot CJ, Jarvis RJ (1984) Age, budget and dynamics of an active salt extrusion in Iran. J Struct Geol 6:521–533

    Article  Google Scholar 

  • Todd DK, Mays LW (2005) Groundwater hydrology, 3rd edn. Wiley, New York, 625 pp

    Google Scholar 

  • Tweed SO, Leblanc M, Webb JA, Lubczynski MW (2007) Remote sensing and GIS for mapping groundwater recharge and discharge areas in salinity prone catchments, southeastern Australia. Hydrogeol J 15:75–96

    Article  Google Scholar 

  • Yeh HF, Lee CH, Hsu KC, Chang PH (2009) GIS for the assessment of the groundwater recharge potential zone. Environ Geol 58:185–195

    Article  Google Scholar 

Download references

Acknowledgements

We extend our appreciation to Chaharmahal and Bakhtiari Regional Water Authority, Iran, especial Ms. Abdollah Fazeli for providing the required equipment and data. The authors also thank the Research Council of Shahrood University of Technology for continuous support during this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahim Bagheri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karami, G.H., Bagheri, R. & Rahimi, F. Determining the groundwater potential recharge zone and karst springs catchment area: Saldoran region, western Iran. Hydrogeol J 24, 1981–1992 (2016). https://doi.org/10.1007/s10040-016-1458-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-016-1458-z

Keywords

Navigation