Skip to main content

Advertisement

Log in

Distinct groundwater recharge sources and geochemical evolution of two adjacent sub-basins in the lower Shule River Basin, northwest China

Différentes origines de la recharge d’aquifère et évolution géochimique de deux sous-bassins adjacents du bassin inférieur de la rivière Shule, nord-ouest de la Chine

Distintas fuentes de recarga y evolución geoquímica del agua subterránea en dos sub-cuencas adyacentes en la parte baja de la Cuenca del Río Shule, noroeste de China

中国西北疏勒河流域下游两个相邻次级盆地地下水补给来源及地球化学演化差异

Fontes distintas de recarga e evolução geoquímica das águas subterrâneas em duas sub-bacias a jusante da Bacia Hidrográfica do Rio Shule, noroeste da China

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Based on analysis of groundwater hydrogeochemical and isotopic data, this study aims to identify the recharge sources and understand geochemical evolution of groundwater along the downstream section of the Shule River, northwest China, including two sub-basins. Groundwater samples from the Tashi sub-basin show markedly depleted stable isotopes compared to those in the Guazhou sub-basin. This difference suggests that groundwater in the Tashi sub-basin mainly originates from meltwater in the Qilian Mountains, while the groundwater in the Guazhou sub-basin may be recharged by seepage of the Shule River water. During the groundwater flow process in the Tashi sub-basin, minerals within the aquifer material (e.g., halite, calcite, dolomite, gypsum) dissolve in groundwater. Mineral dissolution leads to strongly linear relationships between Na+ and Cl and between Mg2++ Ca2+ and SO4 2− + HCO3 , with stoichiometry ratios of approximately 1:1 in both cases. The ion-exchange reaction plays a dominant role in hydrogeochemical evolution of groundwater in the Guazhou sub-basin and causes a good linear relationship between (Mg2++ Ca2+)–(SO4 2− + HCO3 ) and (Na++ K+)–Cl with a slope of −0.89 and also results in positive chloroalkaline indices CAI 1 and CAI 2. The scientific results have implications for groundwater management in the downstream section of Shule River. As an important irrigation district in Hexi Corridor, groundwater in the Guazhou sub-basin should be used sustainably and rationally because its recharge source is not as abundant as expected. It is recommended that the surface water should be used efficiently and routinely, while groundwater exploitation should be limited as much as possible.

Résumé

En se basant sur l’analyse des données isotopiques et hydrogéochimiques des eaux souterraines, l’étude a pour objectif d’identifier les sources de recharge et de comprendre l’évolution géochimique des eaux souterraines le long de la partie aval de la rivière Shule au nord-ouest de la Chine, comprenant deux sous-bassins. Les échantillons d’eau souterraine du sous-bassin de Tashi montrent un appauvrissement fort en isotopes stables par rapport à ceux du sous-bassin de Guazhou. Cette différence suggère que les eaux souterraines du sous-bassin de Tashi proviennent majoritairement de la fonte des neiges des montagnes de Qilian alors que les eaux souterraines du sous-bassin de Guazhou seraient rechargées par infiltration des eaux de la rivière Shule. Au cours du processus d’écoulement des eaux souterraines dans le sous-bassin de Tashi, la dissolution des minéraux contenus dans la matrice de l’aquifère (dont halite, calcite, dolomite, gypse) prend place. La dissolution des minéraux amène à une forte corrélation entre Na+ et Cl et entre Mg2++ Ca2+ et SO4 2− + HCO3 , avec un rapport stœchiométrique d’environ 1:1 dans les deux cas. Les réactions d’échange d’ions jouent un rôle dominant dans l’évolution hydrogéochimique des eaux souterraines du sous-bassin de Guazhou permettant une bonne corrélation linéaire entre (Mg2++ Ca2+)–(SO4 2− + HCO3 ) et (Na++ K+)–Cl avec une pente de −0,89 et également un indice chloro-alcalin positif ICA 1 et ICA 2. Ces résultats scientifiques ont des conséquences pour la gestion des eaux souterraines dans la partie aval de la rivière Shule. Le Corridor de Hexi étant un secteur d’irrigation important, les eaux souterraines du sous-bassin de Guazhou devraient être utilisées de manière durable et rationnelle du fait de recharges attendues pas aussi importantes que prévu. Il est recommandé d’utiliser de manière efficace et régulière les eaux de surface alors que l’exploitation des eaux souterraines devrait être limitée autant que possible.

Resumen

Este estudio tiene como objetivo identificar las fuentes de recarga y entender la evolución geoquímica del agua subterránea en base al análisis de datos hidrogeoquímico e isotópicos, incluyendo a dos subcuencas a lo largo de una sección aguas abajo del río Shule, noroeste de China. Las muestras de agua subterránea de la sub-cuenca del Tashi indican un empobrecimiento de los isótopos estables en comparación con los de la sub-cuenca del Guazhou. Esta diferencia sugiere que el agua subterránea en la subcuenca del Tashi se origina principalmente a partir del agua de deshielo en las montañas de Qilian, mientras que el agua subterránea en la sub-cuenca del Guazhou es recargada por la filtración de agua del río Shule. Durante el proceso de flujo subterráneo en la sub-cuenca del Tashi, los minerales dentro del material del acuífero (por ejemplo, halita, calcita, dolomita, yeso) se disuelven en el agua subterránea. La disolución de los minerales conduce a relaciones fuertemente lineales entre Na+ y Cl y entre Mg2++ Ca2+ y SO4 2− + HCO3, con relaciones estequiométricas de aproximadamente 1:1 en ambos casos. La reacción de intercambio iónico juega un papel dominante en la evolución hidrogeoquímica del agua subterránea en la sub-cuenca del Guazhou y presenta una relación lineal buena entre (Mg2++ Ca2+)–(SO4 2− + HCO3 ) y (Na++ K+)–Cl con una pendiente de −0.89 y también da lugar a índices cloroalcalinos CAI 1 and CAI 2 positivos. Los resultados científicos tienen implicancias para la gestión del agua subterránea en la sección aguas abajo del río Shule. El agua subterránea de la subcuenca del Guazhou, en relación al importante distrito de riego de Hexi Corredor, se debe utilizar de forma sostenible y racional porque su fuente de recarga no es tan abundante como se esperaba. Se recomienda que el agua de superficie sea utilizada de manera eficiente y rutinaria, mientras que la explotación del agua subterránea debe limitarse tanto como sea posible.

摘要

基于对地下水水文地球化学和同位素数据的分析,本研究目的是确定中国西北疏勒河下游地区两个相邻次级盆地内地下水的补给来源并了解地下水的地球化学演化过程。与瓜州次级盆地的地下水样相比,踏实次级盆地的地下水样品显著地贫化重同位素。这个差异表明,踏实次级盆地 的地下水主要来自祁连山区的冰雪融水补给,而瓜州次级盆地的地下水可能由疏勒河水的渗漏 补给。在踏实次级盆地 地下水径流过程中,含水层中的矿物(如岩盐、方解石、白云石及石膏)溶解进入地下水中。

矿物溶解导致Na+ 和 Cl之间 及Mg2++ Ca2+ 和 SO4 2− + HCO3 之间呈现出良好的线性关系,并且它们的 化学计量比例接近1:1。离子交换反应在瓜州次级盆地 地下水水文地球化学演化中发挥着重要作用,致使(Mg2++ Ca2+)–(SO4 2− + HCO3 ) 和 (Na++ K+)–Cl之间具有很好的线性关系,且斜率 为–0.89,也导致了氯碱指数CAI 1 和 CAI 2均大于零。研究结果对疏勒河下游的地下水管理具有启示意义。作为河西走廊的重要农灌区, 瓜州次级盆地内地下水应当可持续地、合理地利用, 因为它的补给来源并不像预想的那样丰富。, 此外, 建议有效地、常态化地利用地表水,同时尽量限制开采地下水。

Resumo

Com base em análises hidrogeoquímicas e dados isotópicos, este estudo tem o objetivo de identificar as fontes de recarga e entender a evolução geoquímica das águas subterrâneas a jusante do Rio Shule, localizado a noroeste da China, abrangendo duas sub-bacias hidrográficas. Amostras de águas subterrâneas da sub-bacia Tashi demonstraram que houve redução de isótopos estáveis, isto quando comparado com a sub-bacia Guazhou. Esta diferença sugere que as águas subterrâneas na sub-bacia Tashi tem como principal origem a água de degelo proveniente das Montanhas Qilian, enquanto que as águas subterrâneas da sub-bacia Guazhou podem ter como fonte de recarga as águas do Rio Shule. Durante o fluxo das águas subterrâneas na sub-bacia Tashi, minerais constituintes do aquífero (p. ex., halita, calcita, dolomita, calcário) são dissolvidos nas águas subterrâneas. As dissoluções dos minerais contribuem para uma forte relação linear entre Na+ e Cl e entre Mg2++ Ca2+ e SO4 2− + HCO3 , com razão estequiométrica de aproximadamente 1:1 em ambos os casos. A reação de troca iônica tem papel dominante na evolução hidrogeoquímica das águas subterrâneas da sub-bacia Guazhou e causa uma boa relação linear entre (Mg2++ Ca2+)–(SO4 2− + HCO3 ) e (Na++ K+)–Cl com inclinação de −0,89 e também resulta em índice cloro-alcalino positivo CAI 1 e CAI 2. Os resultados científicos têm implicações na gestão das águas subterrâneas na seção à jusante do rio Shule. Devido a um importante distrito irrigado no Corredor Hexi as águas subterrâneas na sub-bacia Guazhou deve ser usada de forma sustentável, pois sua fonte de recarga não é tão abundante como era esperado. Recomenda-se o uso eficiente da água superficial, enquanto que a exploração das águas subterrâneas deve ser o mais limitada possível.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Chen J, Liu X, Sun X, Su Z, Yong B (2014) The origin of groundwater in Zhangye Basin, northwestern China, using isotopic signature. Hydrogeol J 22(2):411–424. doi:10.1007/s10040-013-1051-7

    Article  Google Scholar 

  • Cloutier V, Lefebvre R, Savard MM, Bourque E, Therrien R (2006) Hydrogeochemistry and groundwater origin of the Basses-Laurentides sedimentary rock aquifer system, St. Lawrence lowlands, Quebec, Canada. Hydrogeol J 14(4):573–590. doi:10.1007/s10040-005-0002-3

    Article  Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133(3465):1702–1703

    Article  Google Scholar 

  • Currell MJ, Cartwright I (2011) Major-ion chemistry, delta C-13 and Sr-87/Sr-86 as indicators of hydrochemical evolution and sources of salinity in groundwater in the Yuncheng Basin, China. Hydrogeol J 19(4):835–850. doi:10.1007/s10040-011-0721-6

    Article  Google Scholar 

  • Dogramaci S, Skrzypek G (2015) Unravelling sources of solutes in groundwater of an ancient landscape in NW Australia using stable Sr, H and O isotopes. Chem Geol 393–394:67–78

    Article  Google Scholar 

  • Edmunds WM, Guendouz AH, Mamou A, Moulla A, Shand P, Zouari K (2003) Groundwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia: trace element and isotopic indicators. Appl Geochem 18(6):805–822

    Article  Google Scholar 

  • Edmunds WM, Ma JZ, Aeschbach-Hertig W, Kipfer R, Darbyshire DPF (2006) Groundwater recharge history and hydrogeochemical evolution in the Minqin Basin, North West China. Appl Geochem 21(12):2148–2170

    Article  Google Scholar 

  • Eissa MA, Thomas JM, Pohll G, Hershey RL, Dahab KA, Dawoud MI, ElShiekh A, Gomaa MA (2013) Groundwater resource sustainability in the Wadi Watir delta, Gulf of Aqaba, Sinai, Egypt. Hydrogeol J 21(8):1833–1851. doi:10.1007/s10040-013-1031-y

    Article  Google Scholar 

  • Gansu Geology Survey (1978) The report and map for hydrogeological survey in the Changma, Anxi (1: 200,000). Gansu Science and Technology Press, Lanzhou, China

    Google Scholar 

  • Girmay E, Ayenew T, Kebede S, Alene M, Wohnlich S, Wisotzky F (2015) Conceptual groundwater flow model of the Mekelle Paleozoic–Mesozoic sedimentary outlier and surroundings (northern Ethiopia) using environmental isotopes and dissolved ions. Hydrogeol J 23(4):649–672. doi:10.1007/s10040-015-1243-4

    Article  Google Scholar 

  • Gonzalez-Ramon A, Rodriguez-Arevalo J, Martos-Rosillo S, Gollonet J (2013) Hydrogeological research on intensively exploited deep aquifers in the ‘Loma de Aebeda’ area (Jaén, southern Spain). Hydrogeol J 21(4):887–903. doi:10.1007/s10040-013-0957-4

    Article  Google Scholar 

  • Guendouz A, Moulla AS, Edmunds WM, Zouari K, Shand P, Mamou A (2003) Hydrogeochemical and isotopic evolution of water in the Complexe Terminal Aquifer in the Algerian Sahara. Hydrogeol J 11(4):483–495. doi:10.1007/s10040-003-0263-7

    Article  Google Scholar 

  • He JH, Ma JZ, Zhang P, Tian L, Zhu GF, Edmunds WM, Zhang Q (2012) Groundwater recharge environments and hydrogeochemical evolution in the Jiuquan Basin, Northwest China. Appl Geochem 27(4):866–878. doi:10.1016/j.apgeochem.2012.01.014

    Article  Google Scholar 

  • He JH, Ma JZ, Zhao W, Sun S (2015) Groundwater evolution and recharge determination of the Quaternary aquifer in the Shule River basin, Northwest China. Hydrogeol J 23(8):1745–1759. doi:10.1007/s10040-015-1311-9

    Article  Google Scholar 

  • Herczeg AL, Leaney FW (2011) Review: environmental tracers in arid-zone hydrology. Hydrogeol J 19(1):17–29. doi:10.1007/s10040-010-0652-7

    Article  Google Scholar 

  • Herczeg AL, Dogramaci SS, Leaney FWJ (2001) Origin of dissolved salts in a large, semi-arid groundwater system: Murray Basin, Australia. Mar Freshw Res 52(1):41–52

    Article  Google Scholar 

  • Huang P, Wang Z (2010) Impact of human activity on groundwater recharge in Shule River basin, Northwest China. AGU Fall Meeting Abstracts 1:1057

  • IAEA, WMO (2004) Global network of isotopes in precipitation (GNIP) database. http://www.isohis.iaea.org. Accessed July 2016

  • Jalali M (2007) Salinization of groundwater in arid and semi-arid zones: an example from Tajarak, western Iran. Environ Geol 52(6):1133–1149

    Article  Google Scholar 

  • Ji X, Kang E, Chen R, Zhao W, Zhang Z, Jin B (2006) The impact of the development of water resources on environment in arid inland river basins of Hexi region, northwestern China. Environ Geol 50(6):793–801. doi:10.1007/s00254-006-0251-z

    Article  Google Scholar 

  • Londono OMQ, Martinez DE, Dapena C, Massone H (2008) Hydrogeochemistry and isotope analyses used to determine groundwater recharge and flow in low-gradient catchments of the province of Buenos Aires, Argentina. Hydrogeol J 16(6):1113–1127. doi:10.1007/s10040-008-0289-y

    Article  Google Scholar 

  • Ma JZ, Wang XS, Edmunds WM (2005) The characteristics of ground-water resources and their changes under the impacts of human activity in the arid Northwest China: a case study of the Shiyang River Basin. J Arid Environ 61(2):277–295

    Article  Google Scholar 

  • Ma JZ, Pan F, Chen LH, Edmunds WM, Ding ZY, He JH, Zhou KP, Huang TM (2010) Isotopic and geochemical evidence of recharge sources and water quality in the Quaternary aquifer beneath Jinchang city, NW China. Appl Geochem 25(7):996–1007

    Article  Google Scholar 

  • Ma JZ, He JH, Qi S, Zhu GF, Zhao W, Edmunds WM, Zhao YP (2013) Groundwater recharge and evolution in the Dunhuang Basin, northwestern China. Appl Geochem 28(1):19–31

    Article  Google Scholar 

  • Martos-Rosillo S, Marin-Lechado C, Pedrera A, Vadillo I, Motyka J, Luis Molina J, Ortiz P, Martin Ramirez JM (2014) Methodology to evaluate the renewal period of carbonate aquifers: a key tool for their management in arid and semiarid regions, with the example of Becerrero aquifer, Spain. Hydrogeol J 22(3):679–689. doi:10.1007/s10040-013-1086-9

    Article  Google Scholar 

  • Montcoudiol N, Molson J, Lemieux JM, Cloutier V (2015) A conceptual model for groundwater flow and geochemical evolution in the southern Outaouais Region, Québec, Canada. Appl Geochem 58:62–77. doi:10.1016/j.apgeochem.2015.03.007

    Article  Google Scholar 

  • Negrel P, Lemiere B, de Grammont HM, Billaud P, Sengupta B (2007) Hydrogeochemical processes, mixing and isotope tracing in hard rock aquifers and surface waters from the Subarnarekha River Basin, (east Singhbhum District, Jharkhand State, India). Hydrogeol J 15(8):1535–1552. doi:10.1007/s10040-007-0227-4

    Article  Google Scholar 

  • Parkhurst D, Appelo CAJ (1999) User’s guide to PHREEQC (version 2): a computer program for speciation, reaction path, advective transport, and inverse geochemical calculation. US Geol Surv Water Resour Invest Rep 310:99–4259

    Google Scholar 

  • Robertson WM, Sharp JM Jr (2013) Estimates of recharge in two arid basin aquifers: a model of spatially variable net infiltration and its implications (Red Light Draw and Eagle Flats, Texas, USA). Hydrogeol J 21(8):1853–1864. doi:10.1007/s10040-013-1018-8

    Article  Google Scholar 

  • Schoeller H (1965) Hydrodynamique dans le karst [Hydrodynamics of karst]. Actes du Colloques de Doubronik, IAHS/UNESCO, Wallingford, UK/Paris, pp 3–20

  • Sun ZY, Ma R, Wang YX, Hu YL, Sun LJ (2016) Hydrogeological and hydrogeochemical control of groundwater salinity in an arid inland basin: Dunhuang Basin, northwestern China. Hydrol Process 30(12):1884–1902. doi:10.1002/hyp.10760

  • Wang LH, Li GM, Dong YH, Han DM, Zhang JY (2015) Using hydrochemical and isotopic data to determine sources of recharge and groundwater evolution in an arid region: a case study in the upper–middle reaches of the Shule River basin, northwestern China. Environ Earth Sci 73(4):1–15. doi:10.1007/s12665-014-3719-2

    Google Scholar 

  • Wang CX, Dong ZW, Qin X, Zhang J, Du WT, Wu JK (2016) Glacier meltwater runoff process analysis using δD and δ18O isotope and chemistry at the remote Laohugou Glacier Basin in western Qilian Mountains, China. J Geogr Sci 26(6):722–734

    Article  Google Scholar 

  • Xi H, Feng Q, Si J, Chang Z, Cao S (2010) Impacts of river recharge on groundwater level and hydrochemistry in the lower reaches of Heihe River Watershed, northwestern China. Hydrogeol J 18(3):791–801. doi:10.1007/s10040-009-0562-8

    Article  Google Scholar 

  • Yan CY (2007) Study on the change of groundwater recharge and environment change caused by surface water redistribution (in Chinese). Arid Zone Res 24(04):428–433

    Google Scholar 

  • Zhao LJ, Yin L, Xiao HL, Cheng GD, Zhou MX, Yang YG, Li CZ, Zhou J (2011) Isotopic evidence for the moisture origin and composition of surface runoff in the headwaters of the Heihe River basin. Chin Sci Bull 56(4–5):406–415. doi:10.1007/s11434-010-4278-x

    Article  Google Scholar 

  • Zhu GF, Su YH, Feng Q (2008) The hydrochemical characteristics and evolution of groundwater and surface water in the Heihe River Basin, northwest China. Hydrogeol J 16(1):167–182. doi:10.1007/s10040-007-0216-7

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Youth Innovation Promotion Association Chinese Academy Sciences (Grant No. 2016063) and the Project funded by China Postdoctoral Science Foundation (Grant No. 2016 M591247). We are grateful to Dr. Martin Appold and the anonymous reviewers for their constructive comments and suggestions which greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhui Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Dong, Y., Xie, Y. et al. Distinct groundwater recharge sources and geochemical evolution of two adjacent sub-basins in the lower Shule River Basin, northwest China. Hydrogeol J 24, 1967–1979 (2016). https://doi.org/10.1007/s10040-016-1456-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-016-1456-1

Keywords

Navigation