Skip to main content

Advertisement

Log in

Assessment of factors influencing groundwater-level change using groundwater flow simulation, considering vertical infiltration from rice-planted and crop-rotated paddy fields in Japan

Évaluation des facteurs influençant les variations piézométriques en utilisant des simulations des eaux souterraines considérant l’infiltration verticale à partir de rizières associant riz et céréales en rotation au Japon.

Evaluación de los factores influyentes en el cambio de nivel de agua subterránea usando simulación del flujo de agua subterránea, considerando la infiltración vertical a partir de arrozales con plantaciones de arroz y cultivos rotados en Japón

考虑日本水稻和农作物轮作的水田垂直入渗,采用地下水流模拟评价影响地下水位变化的因素

Avaliação dos fatores que influenciam a alteração do nível freático utilizando a simulação do escoamento subterrâneo, considerando a infiltração vertical em campos de cultivo de arroz e a rotação de arrozais no Japão

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Assessing factors that influence groundwater levels such as land use and pumping strategy, is essential to adequately manage groundwater resources. A transient numerical model for groundwater flow with infiltration was developed for the Tedori River alluvial fan (140 km2), Japan. The main water input into the groundwater body in this area is irrigation water, which is significantly influenced by land use, namely paddy and upland fields. The proposed model consists of two models, a one-dimensional (1-D) unsaturated-zone water flow model (HYDRUS-1D) for estimating groundwater recharge and a 3-D groundwater flow model (MODFLOW). Numerical simulation of groundwater flow from October 1975 to November 2009 was performed to validate the model. Simulation revealed seasonal groundwater level fluctuations, affected by paddy irrigation management. However, computational accuracy was limited by the spatiotemporal data resolution of the groundwater use. Both annual groundwater levels and recharge during the irrigation periods from 1975 to 2009 showed long-term decreasing trends. With the decline in rice-planted paddy field area, groundwater recharge cumulatively decreased to 61 % of the peak in 1977. A paddy-upland crop-rotation system could decrease groundwater recharge to 73–98 % relative to no crop rotation.

Résumé

L'évaluation des facteurs qui influencent les niveaux d'eau souterraine, comme l’occupation des sols et la stratégie de pompage, est essentielle pour gérer de manière adéquate les ressources en eau souterraine. Un modèle numérique hydrodynamique transitoire prenant en compte l’infiltration a été développé pour le delta alluvial de la rivière Tedori au Japon (140 km2). L’aquifère est principalement rechargé, dans cette région, par l’eau d'irrigation, qui est significativement influencée par l’occupation des sols, à savoir rizières et cultures des hauts plateaux. Le modèle proposé consiste en deux modèles, un modèle unidimensionnel de la zone non saturée (HYDRUS-1D) pour évaluer la recharge de l’aquifère et un modèle 3D de circulation des eaux souterraines (MODFLOW). Une simulation numérique des circulations d'eau souterraine entre octobre 1975 et novembre 2009 a été réalisée afin de valider le modèle. La simulation a révélé des fluctuations piézométriques saisonnières, affectées par la gestion de l'irrigation des rizières. Cependant, la précision du modèle est limitée par la résolution spatio-temporelle des données sur l'utilisation de l'eau souterraine. Les niveaux piézométriques ainsi que le volume de la recharge, pendant les périodes d'irrigation de 1975 à 2009, montrent conjointement une tendance à la diminution sur le long terme. Avec la diminution des surfaces destinées à la riziculture, la recharge de l’aquifère a baissé de 61 % depuis le pic de 1977. Un système de rotation des cultures dans les rizières des hauts plateaux pourrait diminuer la recharge des aquifères de 73 à 98 % par rapport à la situation actuelle.

Resumen

La evaluación de los factores que influyen en los niveles de agua subterránea, tales como uso de la tierra y las estrategias de bombeo es esencial para manejar adecuadamente los recursos de agua subterránea. Se desarrolló un modelo numérico transitorio para flujo de agua subterránea con infiltración para el abanico aluvial del Río Tedori (140 km2), Japón. La principal entrada de agua en el cuerpo de agua subterránea en esta área es el agua de irrigación, que está significativamente influenciada por el uso de la tierra, es decir arrozales y de tierras altas. El modelo propuesto consiste en dos modelos, un modelo unidimensional (1-D) del flujo de agua en la zona no saturada (HYDRUS-1D) para estimar la recarga de agua subterránea y un modelo tridimensional 3-D de flujo de agua subterránea (MODFLOW). Se llevó a cabo la simulación numérica de flujo de agua subterránea desde octubre de 1975 a noviembre de 2009 para validar el modelo. La simulación reveló fluctuaciones estacionales del nivel de agua subterránea, afectadas por el manejo de la irrigación de los arrozales. Sin embargo, la exactitud computacional fue limitada por la resolución espacio temporal de los datos del uso de agua subterránea. Tanto los niveles anuales de agua subterránea como la recarga durante los períodos de irrigación desde 1975 a 2009 mostraron tendencias decrecientes a largo plazo. Con la disminución de la superficie de los arrozales, la recarga de agua subterránea decreció acumulativamente al 61 % de su pico de 1977. Un sistema de rotación de cultivos de arrozales de las tierras altas podría disminuir la recarga de las aguas subterráneas en un 73 a 98 % con respecto a la situación actual.

摘要

评价影响地下水位变化的因素,如土地利用和抽水方案,对于科学管理地下水资源必不可少。对日本Tedori河冲积扇(140 km2)伴有入渗的地下水流开发了瞬时数值模型。本地区进入地下水体的水主要是灌溉水,灌溉水量的多寡主要受土地利用,即稻田和高地田的影响。所建模型包括两个模型,估算地下水补给的一维非饱和带水流模型(HYDRUS-1D)和三维地下水流模型(MODFLOW)。1975年10月至2009年11月进行了地下水流数值模拟,以验证模型的有效性。模拟揭示了地下水位季节性波动变化,波动变化受水田灌溉管理的影响。然而,计算精度受限于地下水利用的时空资料解析度。 1975年 至2009年灌溉期间的年地下水位和补给量双双显示出下降趋势。随着稻田面积的减少,地下水补给量降低到1977年峰值的61%。稻田-高地农作物轮作系统可使目前的地下水补给量减少73-98 %。

Resumo

A avaliação dos fatores que influenciam os níveis freáticos, como o uso do solo e a estratégia de bombeamento, é essencial para gerir adequadamente os recursos hídricos subterrâneos. Foi desenvolvido um modelo numérico transitório de escoamento subterrâneo com infiltração para o leque aluvionar do Rio Tedori (140 km2), no Japão. A principal entrada de água para a massa de água subterrânea nesta área é a água de rega, que é significativamente influenciada pelo uso do solo, nomeadamente campos de arroz de inundação e de terras altas. O modelo proposto consiste em dois modelos, um modelo de escoamento da zona não saturada unidimensional (1-D, o HYDRUS-1D) para estimar a recarga de águas subterrâneas e um modelo de escoamento subterrâneo 3-D (MODFLOW). Para validar o modelo foi efetuada a simulação numérica do escoamento subterrâneo desde outubro de 1975 até novembro de 2009. A simulação revelou variações sazonais do nível freático, afetadas pela gestão da rega dos campos de arroz. Contudo, a precisão computacional foi limitada pela resolução espaciotemporal dos dados de utilização das águas subterrâneas. Tanto os níveis freáticos como a recarga durante o período de rega de 1975 até 2009 mostraram tendências de descida a longo-prazo. Com o declínio da área plantada de campos de arroz de inundação, a recarga de águas subterrâneas desceu cumulativamente para 61 % do pico de 1977. Um sistema de rotação de culturas de campo de arroz de inundação em terras altas poderia diminuir a recarga de águas subterrâneas em 73-98 % em relação à situação atual.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anan M, Yuge K, Nakano Y et al (2007) Quantification of the effect of rice paddy area changes on recharging groundwater. Paddy Water Environ 5:41–47. doi:10.1007/s10333-006-0059-1

    Article  Google Scholar 

  • Bhadra A, Bandyopadhyay A, Sing R et al (2013) Development of a user friendly water balance model for paddy. Paddy Water Environ 11:331–341. doi:10.1007/s10333-012-03244

    Article  Google Scholar 

  • Boggard TA, van Asch TWJ (2002) The role of the soil moisture balance in the unsaturated zone on movement and stability of the Beline landslide, France. Earth Surf Process Landf 27:1177–1188. doi:10.1002/esp.419

    Article  Google Scholar 

  • Campbell GS (1985) Soil physics with basic transport models for soil-plant system. Elsevier, Amsterdam

    Google Scholar 

  • Chen SK, Liu CW (2002) Analysis of water movement in paddy rice fields (I) experimental studies. J Hydrol 260:206–215

    Article  Google Scholar 

  • Chen Z, Govindaraju RS, Kavvas ML (1994) Spatial averaging of unsaturated flow equations under infiltration conditions over areally heterogeneous fields: 1. development of models. Water Resour Res 30(2):523–534

    Article  Google Scholar 

  • Chen SK, Liu CW, Huang HC (2002) Analysis of water movement in paddy rice fields (II) simulation studies. J Hydrol 268:259–271

    Article  Google Scholar 

  • Doherty J (2004) PEST model—independent parameter estimation user’s manual. Watermark Numerical Computing, Brisbane, Australia

    Google Scholar 

  • Don NC, Hang NTM, Araki H et al (2006) Groundwater resources and management for paddy field irrigation and associated environmental problems in an alluvial coastal lowland plain. Agr Water Manage 84:295–304. doi:10.1016/j.agwat.2006.03.006

    Article  Google Scholar 

  • Elhassan AM, Goto A, Mizutani M (2001) Combining a tank model with a groundwater model for simulating regional groundwater flow in an alluvial fan. Trans JSIDRE 215:21–29

    Google Scholar 

  • Feddes RA, Kowalik PJ, Zaradny H (1978) Simulation of field water use and crop yield. Simulation Monographs, PUDOC, Wageningen, The Netherlands, 189 pp

  • Fukushima A, Kusuda O, Furuhata M (2003) Relationship of vegetation cover to growth and yield in wheat (in Japanese). Rep Kyusyu Br Crop Sci Soc Jpn 69:33–35

    Google Scholar 

  • Furman A (2008) Modeling coupled surface-subsurface flow processed: a review. Vadose Zone J 7:741–756. doi:10.2136/vzj2007.0065

    Article  Google Scholar 

  • Futamata K, Takahashi I, Inoue M (2005) Influence of river stream on groundwater and recharge in the Tedori River alluvial fan areas (in Japanese). Research Report of the Hokuriku Regional Office, Ministry of Construction, Kanazawa, Japan, pp 209–212

  • Harbaugh AW (2005) MODFLOW-2005, The US Geological Survey modular ground-water model: the ground-water flow process: US Geol Surv Tech Methods 6-A16. Available via http://water.usgs.gov/nrp/gwsoftware/modflow2005/modflow2005.html. Accessed 9March 2014

  • Harbaugh AW, McDonald MG (1996) User’s documentation for MODFLOW-96, an update to the USGS modular finite-difference ground-water flow model. US Geol Surv Open-File Rep 96–485

  • Harbaugh AW, Banta ER, Hill MC et al (2000) MODFLOW-2000, the U.S. Geological Survey Modular Ground-Water Model: user guide to modularization concepts and the ground-water flow process. US Geol Surv Open-File Rep 00–92, 121 pp

  • He B, Takese K, Wang Y (2008) A semi-distributed groundwater recharge model for estimating water-table and water-balance variables. Hydrogeol J 16:1215–1228. doi:10.1007/s10440-008-0298-x

    Article  Google Scholar 

  • Hokuriku Regional Agricultural Administration Office (1977) Hydraulic geology and groundwater in Ishikawa prefecture (in Japanese). Hokuriku Regional Agricultural Admin. Office, Kanazawa, Japan

  • Horino H, Watanabe T, Maruyama T (1989) Studies on the role of groundwater in water used for irrigation (in Japanese with English abstract). Trans JSIDRE 144:9–6

    Google Scholar 

  • Imaizumi M, Ishida S, Tsuchihara T (2006) Long-term evaluation of the groundwater recharge function of paddy fields accompanying urbanization in the Nobi Plain, Japan. Paddy Water Environ 4:251–263. doi:10.1007/s10333-006-0056-4

    Article  Google Scholar 

  • Ishikawa Prefecture (2010) Environmental white book 2009 in Ishikawa Prefecture, Ishikawa (in Japanese). Available via http://www.pref.ishikawa.lg.jp/kankyo/shiryo/hakusyo/documents/h21hakusyo.pdf. Accessed 9 March 2014

  • Ishikawa Prefecture (2012) List of amount of intake water by water service facilities: statistical survey of water service in 2010 (in Japanese). Available via http://www.pref.ishikawa.lg.jp/mizukankyo/shiryo/suidou/h22.html. Accessed 9 March 2014

  • Iwasaki Y, Ozaki M, Nakamura K et al (2013a) Relationship between increment of groundwater level at the beginning of irrigation period and paddy field area in the Tedori River Alluvial Fan Area, Japan. Paddy Water Environ 11:551–558. doi:10.1007/s10333-012-0348-9

    Article  Google Scholar 

  • Iwasaki Y, Ozaki M, Nakamura K et al (2013b) Assessment of factors influencing groundwater level changes during irrigation in the Tedori River Fan based on steady-state groundwater flow analysis (in Japanese with English abstract). J Jpn Soc Hydrol Water Res 26(2):99–113

    Article  Google Scholar 

  • Japan Meteorological Agency (2008) Global warming projection 7. Available via http://ds.data.jma.go.jp/tcc/tcc/products/gwp/gwp7/index-e.html. Accessed 9 March 2014

  • Kaushal KG, Bhabani SD, Mohamman S et al (2009) Measurement and modeling of soil water regime in a lowland paddy field showing preferential transport. Agr Water Manage 96:1705–1714. doi:10.1016/j.agwat.2009.06.018

    Article  Google Scholar 

  • Kayane I (1980) Groundwater use for snow melting on the road. GeoJournal 4(2):173–181

    Article  Google Scholar 

  • Khan S, Rana T, Carroll J et al (2010) Assessment of rice hydraulic loading impacts on groundwater and salinity levels. Paddy Water Environ 8:23–29. doi:10.1007/s10333-009-0171-0

    Article  Google Scholar 

  • Kotoda K (1989) Estimation of river basin evapotranspiration from consideration of topographies and land use conditions. IAHS Publ 177, IAHS, Wallingford, UK, pp 271–281

  • Kukal SS, Aggarwal GC (2002) Percolation losses of water in relation to puddling intensity and depth in a sandy loam rice (Oryza sativa) field. Agr Water Manage 57:49–59

    Article  Google Scholar 

  • Leterme B, Gedeon M, Jacques D (2013) Groundwater recharge modeling in the Nete catchment (Belgium) with HYDRUS-1D: MODFLOW package. In: Šimůnek J van Genuchten M TH, Kodešová R (eds) Proc. of the 4th International Conference “HYDRUS Software Applications to Subsurface Flow and Contaminant Transport Problems”, Prague, Czech Republic, March 21–22, 2013, pp 235–244

  • Lin L, Zhang ZB, Janssen M et al (2013) Infiltration properties of paddy fields under intermittent irrigation. Paddy Water Environ. doi:10.1007/s10333-013-0354-6

    Google Scholar 

  • Liu CW, Chen SK, Jou SW et al (2001) Estimation of the infiltration rate of a paddy field in Yun-Lin Taiwan. Agric Syst 68:41–54

    Article  Google Scholar 

  • Maruyama T, Noto F, Yoshida M et al (2012) Analysis of water balance at the Tedori River alluvial fan areas in Japan (in Japanese with English abstract). J Jpn Soc Hydrol Water Res 25(1):20–29

    Article  Google Scholar 

  • Maruyama T, Noto F, Yoshida M et al (2014) Analysis of water balance in the Tedori River alluvial fan areas of Japan: focused on quantitative analysis of groundwater recharge from river and ground surface, especially paddy fields. Paddy Water Environ 12:163–171. doi:10.1007/s10333-013-0373-3

    Article  Google Scholar 

  • Matsuno Y, Nakamura K, Masumoto T et al (2006) Prospects for multifunctionality of paddy rice cultivation in Japan and other countries in monsoon Asia. Paddy Water Environ 4:189–197. doi:10.1007/s10333-006-0048-4

    Article  Google Scholar 

  • Ministry of Land, Infrastructure, Transport and Tourism (2011) National land numerical information download service. Available via http://nlftp.mlit.go.jp/ksj/. Accessed 9 March 2014

  • Ministry of Land, Infrastructure, Transport and Tourism (2011) The Nationwide Ocean Wave information network for Ports and HArbourS, (NOWPHAS). Available via http://www.mlit.go.jp/kowan/nowphas/index_eng.html. Accessed 9 March 2014

  • Mitsuno T, Kobayashi S, Maruyama T (1982) Groundwater recharge function of paddy field: a case of groundwater balance analysis in Nobi Plain (in Japanese). J JSIDRE 50(1):1–18

    Google Scholar 

  • Morita K, Honda T, Nishiura T (2008) For planning of normal discharge of Tedori River (in Japanese). Technical report of Hokuriku Regional Office of Construction, Ministry of Construction and Transportation. Available via http://www.hrr.mlit.go.jp/library/happyoukai/h20/pdf/c/cj_15kanazawa.pdf. Accessed 9 March 2014

  • Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12:513–522

    Article  Google Scholar 

  • Murashima K (2009) Investigation and change prediction of irrigation water use: normal hydrological cycle as a core of irrigation water, Annual Report 2008 (in Japanese). Ishikawa Prefectural University, Japan

  • Nakumura S, Yudate T, Uchino H et al (2007) Effect of vegetation cover ratio in maize and soybean on weed growth and crop yield: relations to planting density and varieties (in Japanese). Report 48, Japanese Society of Breeding and the Crop Science Society of Japan, Hokkaido, Japan, pp 51–52

  • Noto F, Maruyama T, Hayase Y et al (2013a) Evaluation of water resources by snow storage using water balance and tank model method in the Tedori River basin of Japan. Paddy Water Environ 11:113–121. doi:10.1007/s10333-011-0297-8

    Article  Google Scholar 

  • Noto F, Maruyama T, Hayase Y et al (2013b) Prediction of water resources as snow storage under climate change in the Tedori River basin of Japan. Paddy Water Environ 11:463–471. doi:10.1007/s10333-012-0337-z

    Article  Google Scholar 

  • Okumaya T (2011) Clarifying the hydrogeological structure of Tedori River basin: research on sound hydrologic cycle as a core of irrigation, Annual Report 2010 (in Japanese). Ishikawa Prefectural University, Japan

  • Phogat V, Yadav AK, Malik RS et al (2010) Simulation of salt and water movement and estimation of water productivity of rice crop irrigated with saline water. Paddy Water Environ 8:333–346

    Article  Google Scholar 

  • Raneesh KY, Thampi SG (2013) A simple semi-distributed hydrologic model to estimate groundwater recharge in a humid tropical basin. Water Resour Manage 27:1517–1532. doi:10.1007/s11269-012-0252-5

    Article  Google Scholar 

  • Satoh T (2002) Studies on techniques for lodging prevention of rice variety “Koshihikari” based on growth diagnosis (in Japanese). Hokuriku Sakumotsu Gakkaiho 37:4–9

    Google Scholar 

  • Shibayama M, Sakamoto T, Takada E et al (2011) Estimating paddy rice leaf area index with fixed point continuous observation of near infrared reflectance using a calibrated digital camera. Plant Prod Sci 14(1):30–46

    Article  Google Scholar 

  • Shimada S, Hirokawa F, Miyagawa T (1990) Effects of planting data and planting density on a high yielding soybean cultivar grown at drained paddy field in Sanyo District (in Japanese with English abstract). Jpn J Crop Sci 59(2):257–264

    Article  Google Scholar 

  • Šimunek J, Bradford SA (2008) Vadose zone modeling: introduction and importance. Vadose Zone J 7(2):581–586

    Article  Google Scholar 

  • Sugio S, Eto M, Imayama K et al (1999) Fall of unconfined groundwater level caused by change of ground cover condition in Miyazaki city (in Japanese with English abstract). J Groundw Hydrol 41(4):253–262

    Google Scholar 

  • Takeda G, Udagawa T (1976) Ecological studies on the photosynthesis of winter cereals: III. changes of the photosynthetic ability of various organs with growth (in Japanese with English abstract). Jpn J Crop Sci 45(2):357–368

    Article  Google Scholar 

  • Tournebize J, Watanabe H, Takagi K et al (2006) The development of a coupled model (PCPF-SWMS) to simulate water flow and pollutant transport in Japanese paddy fields. Paddy Water Environ 4:39–51

    Article  Google Scholar 

  • Tsuchihara T, Yoshimoto S, Ishida S et al (2010) Environmental isotope-based investigation of hydrological aspects of groundwater recharge and discharge in Tedori Alluvial Fan (in Japanese). Appl Hydrol 22:11–20

    Google Scholar 

  • Tsujimoto T, Futamata H, Qing X et al (2005) Relation between instream flow and underground water in fluvial fan discussed in river management of the Tedori River (in Japanese with English abstract). J River Eng 11:529–534

    Google Scholar 

  • Twarakavi NKC, Šimunek J, Seo S (2008) Evaluating interactions between groundwater and vadose zone using the HYDRUS-based flow package for MODFLOW. Vadose Zone J 7:757–768

    Article  Google Scholar 

  • van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Article  Google Scholar 

  • Watanabe S, Yoneda M, Morisawa S et al (2002) Simulation of groundwater level fluctuation and recharge estimation in Kagamihara groundwater basin, Gifu prefecture (in Japanese with English abstract). J Groundw Hydrol 44(3):199–211

    Google Scholar 

  • Xu X, Huang G, Zhan H et al (2012) Integration of SWAP and MODFLOW-2000 for modeling groundwater dynamics in shallow water table areas. J Hydrol 412–413:70–181. doi:10.1016/j.kydrol.2011.07.002

    Google Scholar 

  • Zhu Y, Shi L, Lin L et al (2012) A fully coupled numerical modeling for regional unsaturated-saturated water flow. J Hydrol 475:188–203

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by a subsidy from the Ministry of Agriculture, Forestry and Fisheries of Japan entitled “Normal hydrological cycle in the Tedori River Alluvial Fan areas as a basis for irrigation water”. The authors thank the Ishikawa Prefectural government and Ishikawa Prefectural University for providing statistical datasets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yumi Iwasaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwasaki, Y., Nakamura, K., Horino, H. et al. Assessment of factors influencing groundwater-level change using groundwater flow simulation, considering vertical infiltration from rice-planted and crop-rotated paddy fields in Japan. Hydrogeol J 22, 1841–1855 (2014). https://doi.org/10.1007/s10040-014-1171-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-014-1171-8

Keywords

Navigation