Skip to main content
Log in

XRCT image processing for sand fabric reconstruction

  • Original Report
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We explore computationally efficient techniques to improve the XRCT image processing of low resolution and very noisy images for use in reconstruction of the fabric of densely packed, natural sand deposits. To this end we evaluate an image preprocessing workflow that incorporates image denoising, single image super resolution, image segmentation and level-set (LS) reconstruction. We show that, although computationally intensive, the Non-Local Mean (NLM) filter improves the quality of XRCT images of granular material by increasing the signal-to-noise ratio without impairing visible structures in the images, and outperforms more traditional local filters. We then explore an image super-resolution technique based on sparse signal representation and show that it performs well with noisy data and improves the subsequent stage of binarization. The image binarization is performed using a Hidden Markov Random Fields (HMRF) with Weighted Expectation Maximization (WEM) algorithm which takes the spatial information into account and performs well on high resolution images, however it still struggles with low quality images. We then use the level set method to define the grain geometry and show that the Distance Regularized LS Evolution (DRLSE) is an efficient approach for data sets with large numbers of grains. Finally, we introduce a penalty term into the evolution of the LS function, to address the issue of adhesion of much finer particles, such as clay, on the surface of the reconstructed avatars, while maintaining the main morphological details of the grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Cundall, P.A., Strack, O.D.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979). https://doi.org/10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  2. Garcia, X., Latham, J.-P., Xiang, J.-S., Harrison, J.: A clustered overlapping sphere algorithm to represent real particles in discrete element modelling. Geotechnique 59(9), 779–784 (2009). https://doi.org/10.1680/geot.8.T.037

    Article  Google Scholar 

  3. Tamadondar, M.R., de Martïn, L., Rasmuson, A.: Agglomerate breakage and adhesion upon impact with complex-shaped particles. AIChE J. 65(6), 16581 (2019). https://doi.org/10.1002/aic.16581

    Article  CAS  Google Scholar 

  4. Wu, M., Wang, J., Russell, A., Cheng, Z.: Dem modelling of mini-triaxial test based on one-to-one mapping of sand particles. Gëotechnique 71(8), 714–727 (2021). https://doi.org/10.1680/jgeot.19.P.212

    Article  Google Scholar 

  5. Zhao, D., Nezami, E.G., Hashash, Y.M., Ghaboussi, J.: Three-dimensional discrete element simulation for granular materials. Eng. Comput. (2006). https://doi.org/10.1108/02644400610689884

    Article  Google Scholar 

  6. Zhao, S., Zhao, J.: SudoDEM: unleashing the predictive power of the discrete element method on simulation for non-spherical granular particles. Comput. Phys. Commun. 259, 107670 (2021). https://doi.org/10.1016/j.cpc.2020.107670

    Article  MathSciNet  CAS  Google Scholar 

  7. Wang, X., Nie, Z., Gong, J., Liang, Z.: Random generation of convex aggregates for dem study of particle shape effect. Constr. Build. Mater. 268, 121468 (2021). https://doi.org/10.1016/j.conbuildmat.2020.121468

    Article  Google Scholar 

  8. Vlahinić, I., Andö, E., Viggiani, G., Andrade, J.E.: Towards a more accurate characterization of granular media: extracting quantitative descriptors from tomographic images. Granul. Matter 16(1), 9–21 (2014). https://doi.org/10.1007/s10035-013-0460-6

    Article  Google Scholar 

  9. Kawamoto, R., Andö, E., Viggiani, G., Andrade, J.E.: All you need is shape: predicting shear banding in sand with ls-dem. J. Mech. Phys. Solids 111, 375–392 (2018). https://doi.org/10.1016/j.jmps.2017.10.003

    Article  ADS  Google Scholar 

  10. Stamati, O., Andö, E., Roubin, E., Cailletaud, R., Wiebicke, M., Pinzon, G., Couture, C., Hurley, R., Caulk, R., Caillerie, D., et al.: Spam: software for practical analysis of materials. J. Open Source Softw. 5(51), 2286 (2020). https://doi.org/10.21105/joss.02286

    Article  ADS  Google Scholar 

  11. Vlahinić, I., Andrade, J., Andö, E., Viggiani, G.: From 3d tomography to physics-based mechanics of geomaterials, pp. 339–345. ASCE (2013). https://doi.org/10.1061/9780784413029.043

  12. Fu, R., Hu, X., Zhou, B.: Discrete element modeling of crushable sands considering realistic particle shape effect. Comput. Geotech. 91, 179–191 (2017). https://doi.org/10.1016/j.compgeo.2017.07.016

    Article  Google Scholar 

  13. Garcia, E.F., Ando, E., Viggiani, G., Sitar, N.: Influence of depositional fabric on mechanical properties of naturally deposited sands (in press). Geotechnique (2022). https://doi.org/10.1680/jgeot.21.00230

    Article  Google Scholar 

  14. Tan, P., Wijesuriya, H.S., Sitar, N.: A generalized image preprocessing workflow for high fidelity 3d rendering of natural sands from x-ray computed tomography images. In: 16th U.S. National Congress on Computational Mechanics, vol. 16, pp. 840. USACM (2021). http://16.usnccm.org/sites/default/files/Technical%20Program%20Abstracts_USNCCM16.pdf

  15. Tan, P.: Numerical modeling of soil fabric of naturally deposited sand. PhD thesis, University of California, Berkeley, CA (2022). https://www.proquest.com/docview/2718863231

  16. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2861–2873 (2010). https://doi.org/10.1109/TIP.2010.2050625

    Article  MathSciNet  PubMed  ADS  Google Scholar 

  17. Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20(1), 45–57 (2001). https://doi.org/10.1109/42.906424

    Article  CAS  PubMed  Google Scholar 

  18. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271), vol. 2, pp. 839–846. IEEE (1998). https://doi.org/10.1109/ICCV.1998.710815

  19. Xu, J., Chang, Z., Fan, J., Zhao, X., Wu, X., Wang, Y., Zhang, X.: Super-resolution via adaptive combination of color channels. Multimed. Tools Appl. (2017). https://doi.org/10.1007/s11042-015-3124-1

    Article  Google Scholar 

  20. Carrato, S., Ramponi, G., Marsi, S.: A simple edge-sensitive image interpolation filter. In: Proceedings of 3rd IEEE International Conference on Image Processing, vol. 3, pp. 711–714. IEEE (1996). https://doi.org/10.1109/ICIP.1996.560778

  21. Hou, H., Andrews, H.: Cubic splines for image interpolation and digital filtering. IEEE Trans. Acoust. Speech Signal Process. 26(6), 508–517 (1978). https://doi.org/10.1109/TASSP.1978.1163154

    Article  ADS  Google Scholar 

  22. Sun, J., Xu, Z., Shum, H.-Y.: Image super-resolution using gradient profile prior. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008). https://doi.org/10.1109/CVPR.2008.4587659

  23. Chang, H., Yeung, D.-Y., Xiong, Y.: Super-resolution through neighbor embedding. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004, vol. 1. IEEE (2004). https://doi.org/10.1109/CVPR.2004.1315043

  24. Lee, H., Battle, A., Raina, R., Ng, A.: Efficient sparse coding algorithms. Adv. Neural Inf. Process. Syst. 19, 801–808 (2006)

  25. Sun, J., Zheng, N.-N., Tao, H., Shum, H.-Y.: Image hallucination with primal sketch priors. In: 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings., vol. 2, p. 729. IEEE (2003). https://doi.org/10.1109/CVPR.2003.1211539

  26. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2008). https://doi.org/10.1109/TPAMI.2008.79

    Article  Google Scholar 

  27. Zhang, X.J., Hu, B.L.: Image super-resolution via saliency sparse representation. In: Measurement Technology and Its Application III. Applied Mechanics and Materials, vol. 568, pp. 659–662. Trans Tech Publications Ltd., (2014). https://doi.org/10.4028/www.scientific.net/AMM.568-570.659

  28. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992). https://doi.org/10.1016/0167-2789(92)90242-F

    Article  MathSciNet  ADS  Google Scholar 

  29. Pickup, L., Roberts, S.J., Zisserman, A.: A sampled texture prior for image super-resolution. Adv. Neural Inf. Process. Syst. 16, 1587–1594 (2003)

  30. Kim, K.I., Kwon, Y.: Single-image super-resolution using sparse regression and natural image prior. IEEE Trans. Pattern Anal. Mach. Intell. 32(6), 1127–1133 (2010). https://doi.org/10.1109/TPAMI.2010.25

    Article  PubMed  Google Scholar 

  31. Yang, J.: Sparse modeling of high-dimensional data for learning and vision. PhD thesis, University of Illinois at Urbana-Champaign (2012). https://www.ideals.illinois.edu/items/16520

  32. Donoho, D.L.: For most large underdetermined systems of linear equations the minimal 1-norm solution is also the sparsest solution. Commun. Pure Appl. Math. J. Issued Courant Inst. Math. Sci. 59(6), 797–829 (2006). https://doi.org/10.1002/cpa.20132

    Article  MathSciNet  Google Scholar 

  33. Lee, H., Battle, A., Raina, R., Ng, A.Y.: Efficient sparse coding algorithms. In: Proceedings of the 19th International Conference on Neural Information Processing Systems. NIPS’06, pp. 801–808. MIT Press, Cambridge, MA, USA (2006)

  34. Ibanez, L., Lorensen, B., McCormick, M., King, B., Blezek, D., Johnson, H., Lowekamp, B., jjomier, Kitware, I., Lehmann, G., Gelas, A., Malaterre, M., karthikkrishnan, Zukić, D., Hoffman, B., Will, Aylward, S.R., Liu, X., stnava, Dekker, N., Popoff, M., Tustison, N., Gabehart, S., Gouaillard, A., Enquobahrie, A., Helba, B., Vercauteren, T., Hernandez-Cerdan, P., Doria, D.: InsightSoftwareConsortium/ITK: ITK 5.1 Release Candidate 1. Zenodo (2019). https://doi.org/10.5281/zenodo.3592082

  35. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 5.1, pp. 281–297. University of California Press (1967)

  36. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076

    Article  Google Scholar 

  37. Wells, W.M., Grimson, W.E.L., Kikinis, R., Jolesz, F.A.: Adaptive segmentation of MRI data. IEEE Trans. Med. Imaging 15(4), 429–442 (1996). https://doi.org/10.1109/42.511747

    Article  CAS  PubMed  Google Scholar 

  38. Guillemaud, R., Brady, M.: Estimating the bias field of MR images. IEEE Trans. Med. Imaging 16(3), 238–251 (1997). https://doi.org/10.1109/42.585758

    Article  CAS  PubMed  Google Scholar 

  39. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988). https://doi.org/10.1016/0021-9991(88)90002-2

    Article  MathSciNet  ADS  Google Scholar 

  40. Li, C., Xu, C., Gui, C., Fox, M.D.: Distance regularized level set evolution and its application to image segmentation. IEEE Trans. Image Process. 19(12), 3243–3254 (2010). https://doi.org/10.1109/TIP.2010.2069690

    Article  MathSciNet  PubMed  ADS  Google Scholar 

  41. Kawamoto, R., Andö, E., Viggiani, G., Andrade, J.E.: Level set discrete element method for three-dimensional computations with triaxial case study. J. Mech. Phys. Solids 91, 1–13 (2016). https://doi.org/10.1016/j.jmps.2016.02.021

    Article  MathSciNet  ADS  Google Scholar 

  42. Huisken, G.: Flow by mean curvature of convex surfaces into spheres. J. Differ. Geom. 20(1), 237–266 (1984). https://doi.org/10.4310/jdg/1214438998

    Article  MathSciNet  Google Scholar 

  43. Chu, K., Wheeler, D.: LSMLIB (2022). https://github.com/velexi-research/LSMLIB

Download references

Acknowledgements

This research was supported by the National Science Foundation under grant CMMI-1853056, the Edward G. and John R. Cahill Chair, the Berkeley-France Fund, and PEER-Caltrans at UC Berkeley.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasitha Sithadara Wijesuriya.

Ethics declarations

Conflict of interest

The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Mathematical details of solving Lagrange dual problem

  1. 1.

    Objective function:

    $$\begin{aligned} D(\lambda )&= {} \min _D \mathcal {L}(D,\lambda ) \nonumber \\&= {} {\textbf {trace}}( X^T - XZ^T (ZZ^T + \Lambda )^{-1} (XZ^T) ^T - \Lambda ) \end{aligned}$$
    (A1)
  2. 2.

    Gradient:

    $$\begin{aligned} \frac{\partial D(\lambda )}{\partial \lambda _i} = \Vert XZ^T (ZZ^T + \Lambda )^{-1} e_i\Vert ^2 - 1 \end{aligned}$$
    (A2)

    Where \(e_i\in \mathcal {R}^n\) is the i-th unit vector.

  3. 3.

    Hessian:

    $$\begin{aligned}{} & {} \frac{\partial ^2 D(\lambda )}{\partial \lambda _i \partial \lambda _j} = -2((ZZ^T + \Lambda )^{-1} \nonumber \\{} & {} \quad (XZ^T)^T XZ^T (ZZ^T+\Lambda )^{-1})_{ij} ((ZZ^T+\lambda )^{-1})_{ij} \end{aligned}$$
    (A3)
  4. 4.

    Since then, the Lagrange dual problem can be optimized using conventional solvers, i.e., Newton’s method or Conjugate Gradient. The optimum dictionary D is obtained via:

    $$\begin{aligned} D^T = (ZZ^T + \lambda )^{-1} (XZ^T)^T \end{aligned}$$
    (A4)

Appendix 2: Expectation-maximization algorithm

  1. 1.

    Start: Initialize parameter set \(\Theta ^0\) (randomly sampled from normal distribution).

  2. 2.

    The E-step: Compute posterior probability \(P(x_i=l \mid y_i, \Theta ^t)\) for each observed pixel \(y_i\) with respect to parameters of l-th cluster, which is the first and second moment of inertial \(\mu _l\) and \(\Sigma _l\) in the MGM model. Mathematically, E-step seeks a distribution q such that:

    $$\begin{aligned} q^{t+1}=\arg \max _q F(q^t,\Theta ^t)=P(x\mid y,\Theta ^t) \end{aligned}$$
    (B5)

    Where \(F(q^t,\Theta ^t)\) is the free energy at t-th iteration, it is a function of the expected complete log likelihood and the entropy of distribution q. \(F(q^t,\Theta ^t)\) is the lower bound of log likelihood \(\log {P(y_i)}\) for each pixel, and the bound is obtainable when q is the posterior of label \(x_i\) with respect to the intensity level \(y_i\). Sketch of proof:

    $$\begin{aligned} \begin{aligned} \log {P(y_i)}&= \log { \sum _{l=1}^L P(y_i, x_i=l \mid \Theta ) } \\&= \log { \sum _{l=1}^L \frac{q(x_i\mid y_i, \Theta )P(y_i, x_i \mid \Theta )}{q(x_i\mid y_i, \Theta )} } \\&= \log { \sum _q \frac{P(y_i, x_i \mid \Theta )}{q(x_i \mid y_i, \Theta )} } \ge \sum _q \log { \frac{P(y_i, x_i \mid \Theta )}{q(x_i \mid y_i, \Theta )} } \\&= \sum _{l=1}^L q(x_i\mid y_i, \Theta ) \log {P(y_i, x_i \mid \Theta )}\\&- \sum _{l=1}^L q(x_i\mid y_i, \Theta ) \log {q(x_i\mid y_i,\Theta )} \\&= F(q, \Theta ) \end{aligned} \end{aligned}$$
    (B6)
  3. 3.

    The M-step: Maximize free energy \(F(q^{(t+1)},\Theta ^t)\):

    $$\begin{aligned} \begin{aligned} \Theta ^{t+1}&= \arg \max _{\Theta } F(q^{t+1}, \Theta ^t) \\&= \arg \max _{\Theta } \sum _{l=1}^L q(x_i \mid y_i, \Theta ) \log {P (y_i, x_i \mid \Theta )} \end{aligned} \end{aligned}$$
    (B7)
  4. 4.

    Repeat the E-step and the M-step until convergence (up to 30 iterations in this study).

Appendix 3: EM algorithm for the weighted mixture Gaussian model

  1. 1.

    The E-step computes the posterior probability of pixel \(y_i\) from cluster l with parameter \(\{\mu _l, \Sigma _l\}\) and weight \(w_i\).

    $$\begin{aligned} q_{il}^{t+1} = \frac{\pi _l^t \hat{P}(y_i; \mu _l, \Sigma _l, w_i) }{\tilde{P} (y_i; \Theta , w_i)} \end{aligned}$$
    (C8)

    where \(\hat{P}\) and \(\tilde{P}\) are defined before

  2. 2.

    the M-step updates parameters space by maximizing free energy:

    $$\begin{aligned} \begin{aligned} \Theta ^{t+1}&= \arg \max _{\Theta }\sum _{i=1}^N \sum _{l=1}^L q_{il}^{t+1} \log {\pi _l \mathcal {N}(y_i; \mu _l, \frac{\Sigma _l}{w_i}) } \\&= \arg \max _{\Theta } \sum _{i=1}^N \sum _{l=1}^L q_{il}^{t+1} (\log {\pi _l} - \log {\mid \Sigma _l\mid ^{\frac{1}{2}}}\\&\quad- \frac{w_i}{2} (y_i-\mu _i)^T \Sigma _l^{-1} (y_i-\mu _i)) \end{aligned} \end{aligned}$$
    (C9)

    By canceling out the derivatives with respect to the model parameters, we obtained the following update formula for the mixture proportions, means and covariance matrices:

    $$\begin{aligned} \pi _l^{t+1}&= {} \frac{1}{N}\sum _{i=1}^N q_{il}^{t+1} \end{aligned}$$
    (C10)
    $$\begin{aligned} \mu _l^{t+1}&= {} \frac{\sum _{i=1}^N w_i q_{il}^{t+1} y_i}{\sum _{i=1}^N w_i q_{il}^{t+1}} \end{aligned}$$
    (C11)
    $$\begin{aligned} \Sigma _{l}^{t+1}&= {} \frac{\sum _{i=1}^N w_i q_{il}^{t+1}(y_i - u_i^{t+1})(y_i-u_i^{t+1})^T }{\sum _{i=1}^N q_{il}^{t+1}} \end{aligned}$$
    (C12)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, P., Wijesuriya, H.S. & Sitar, N. XRCT image processing for sand fabric reconstruction. Granular Matter 26, 15 (2024). https://doi.org/10.1007/s10035-023-01368-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-023-01368-1

Keywords

Navigation