Skip to main content
Log in

Tensile behavior of layered rock disks under diametral loading: experimental and numerical investigations

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The tensile strength and cracking behavior of layered rocks in a tensile stress field are one of the most significant characteristics of rock masses, which may strongly affect the stability of rock structures. The study presented here investigated the effect of layer spacing and inclination angle on the indirect tensile strength, crack development, failure pattern, and contact force chain of layered disks under diametral loading using experimental and numerical investigations. Numerous experimental models made from plaster were examined under diametral loading, and a two-dimensional Particle Flow Code (PFC2D) was adopted for in depth simulation of the failure process. Both numerical and experimental results were found to be in great agreement and showed that the increase in the layer orientation up to 15° results in the peak in the tensile strength followed by a decrease. Specimens with the spacing ratio (SR) of 0.5 and 0.1 showed the highest and lowest tensile and compressive stresses at the disk center, respectively. Moreover, the numerical analysis indicated the formation of three failure pattern types: TL, PB, and TL-PB. Tensile cracks mainly formed in the direction of diametral loading, and their maximum number formed at 15° and SR = 0.5. Additionally, the shear ones formed in a conjugate system and had negligible numbers. The analysis of the contact force chain showed that the layers do not affect the compressive force chain at α < 45° but at higher angles, the stronger layers transfer compressive force. However, when α ranges from 0° to 30°, tensile forces are distributed in stronger layers, and with an increase in α, the concentration of these forces in these layers diminishes and the forces are reoriented in the direction of diametral loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

ISRM:

International society for rock mechanics

TL:

Through layer fracture pattern

PB:

Parallel to layer fracture pattern

TL-PB:

Mixed fracture pattern

PFC:

Particle flow code

FJ-BPM:

Flat-jointed bonded-particle model

DEM:

Discrete element method

SR:

Spacing ratio

UCS:

Uniaxial compressive strength (MPa)

E :

Modulus of elasticity (GPa)

σ t :

Tensile strength (MPa)

ν :

Poisson’s ratio

E c :

Particle modulus of elasticity (GPa)

\(\overline{\lambda }\) :

Radius multiplier

φ Fj :

Friction coefficient of flat-joint bonds

σ t -Fj :

Tensile strength of flat-joint bonds (MPa)

c Fj :

Cohesion coefficient of flat-joint bonds (MPa)

\({t}_{l}\) :

Thickness of the layers (mm)

t :

Disk thickness (mm)

\(\overline{E}_{c}\) :

Elastic modulus of flat-joint bonds (GPa)

k n :

Normal stiffness of ball contacts (N/m)

k s :

Shear stiffness of ball contacts (N/m)

R max :

Maximum radius of balls (mm)

R min :

Minimum radius of balls (mm)

\(\overline{k}_{s}\) :

Shear stiffness of flat-joint bonds (N/m)

\(\overline{k}_{n}\) :

Normal stiffness of flat-joint bonds (N/m)

σ xx , σ yy, σ xy :

Stress tensor components in global coordinate x,y (MPa)

α :

Layer inclination angle (◦)

D :

Disk diameter (mm)

P :

Applied load at the failure of the disk (N)

References

  1. Aadnoy, B., Looyeh, R.: Petroleum Rock Mechanics : Drilling Operations and Well Design, 2nd edn. Gulf Professional Publishing, Oxford (2011)

    Google Scholar 

  2. Abdullah, R., Tsutsumi, T., Amin, M.F.M., et al.: Evolution on deformation behaviour of brazilian test under different contact area using particle image velocimetry and finite element modelling. Measurement 159, 107796 (2020). https://doi.org/10.1016/j.measurement.2020.107796

    Article  Google Scholar 

  3. Al-Harthi, A.A.: Effect of planar structures on the anisotropy of Ranyah sandstone, Saudi Arabia. Eng. Geol. 50, 49–57 (1998). https://doi.org/10.1016/S0013-7952(97)00081-1

    Article  Google Scholar 

  4. Amadei, B.: Importance of anisotropy when estimating and measuring in situ stresses in rock. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 33, 293–325 (1996). https://doi.org/10.1016/0148-9062(95)00062-3

    Article  Google Scholar 

  5. Amir Hosseini, M., Kamrava, S., Sahimi, M., Tahmasebi, P.: Effect of wettability on two-phase flow through granular porous media: fluid rupture and mechanics of the media. Chem. Eng. Sci. 269, 118446 (2023). https://doi.org/10.1016/J.CES.2023.118446

  6. Asadizadeh, M., Khosravi, S., Karimi, J., et al.: Mechanical behavior of single-flawed cylindrical specimens subjected to axial loading: a numerical investigation. Bull. Eng. Geol. Environ. 81, 442 (2022). https://doi.org/10.1007/s10064-022-02940-4

    Article  Google Scholar 

  7. Bahaaddini, M., Serati, M., Masoumi, H., Rahimi, E.: Numerical assessment of rupture mechanisms in Brazilian test of brittle materials. Int. J. Solids Struct. 180–181, 1–12 (2019). https://doi.org/10.1016/j.ijsolstr.2019.07.004

    Article  Google Scholar 

  8. Bahaaddini, M., Sharrock, G., Hebblewhite, B.K.: Numerical investigation of the effect of joint geometrical parameters on the mechanical properties of a non-persistent jointed rock mass under uniaxial compression. Comput. Geotech. 49, 206–225 (2013a). https://doi.org/10.1016/j.compgeo.2012.10.012

    Article  Google Scholar 

  9. Bahaaddini, M., Sharrock, G., Hebblewhite, B.K.: Numerical direct shear tests to model the shear behaviour of rock joints. Comput. Geotech. 51, 101–115 (2013b). https://doi.org/10.1016/j.compgeo.2013.02.003

    Article  Google Scholar 

  10. Cai, M., Kaiser, P.: Numerical simulation of the Brazilian test and the tensile strength of anisotropic rocks and rocks with pre-existing cracks. Int. J. Rock Mech. Min. Sci 41, 478–483 (2004). https://doi.org/10.1016/j.ijrmms.2004.03.086

    Article  Google Scholar 

  11. Chang, X., Zhao, H., Cheng, L.: Fracture propagation and coalescence at bedding plane in layered rocks. J. Struct. Geol. 141, 104213 (2020). https://doi.org/10.1016/j.jsg.2020.104213

    Article  Google Scholar 

  12. Chen, S., Yue, Z.Q., Tham, L.G.: Digital image-based numerical modeling method for prediction of inhomogeneous rock failure. Int. J. Rock Mech. Min. Sci. 41, 939–957 (2004). https://doi.org/10.1016/J.IJRMMS.2004.03.002

    Article  Google Scholar 

  13. Chen, S., Yue, Z.Q., Tham, L.G., Lee, P.K.K.: Modeling of the indirect tensile test for inhomogeneous granite using a digital image-based numerical method. Int. J. Rock Mech. Min. Sci. 41, 466–471 (2004). https://doi.org/10.1016/J.IJRMMS.2004.03.084

    Article  Google Scholar 

  14. Cho, J.-W., Kim, H., Jeon, S., Min, K.-B.: Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist. Int. J. Rock Mech. Min. Sci. 50, 158–169 (2012). https://doi.org/10.1016/j.ijrmms.2011.12.004

    Article  Google Scholar 

  15. Debecker, B., Vervoort, A.: Two-dimensional discrete element simulations of the fracture behaviour of slate. Int. J. Rock Mech. Min. Sci. 61, 161–170 (2013). https://doi.org/10.1016/j.ijrmms.2013.02.004

    Article  Google Scholar 

  16. Dorogoy, A., Banks-Sills, L.: Effect of crack face contact and friction on Brazilian disk specimens—a finite difference solution. Eng. Fract. Mech. 72, 2758–2773 (2005). https://doi.org/10.1016/J.ENGFRACMECH.2005.05.005

    Article  Google Scholar 

  17. Douma, L.A.N.R., Regelink, J.A., Bertotti, G., et al.: The mechanical contrast between layers controls fracture containment in layered rocks. J. Struct. Geol. 127, 103856 (2019). https://doi.org/10.1016/j.jsg.2019.06.015

    Article  Google Scholar 

  18. Duan, K., Kwok, C.Y.: Discrete element modeling of anisotropic rock under Brazilian test conditions. Int. J. Rock Mech. Min. Sci. 78, 46–56 (2015). https://doi.org/10.1016/j.ijrmms.2015.04.023

    Article  Google Scholar 

  19. Erarslan, N., Liang, Z.Z., Williams, D.J.: Experimental and numerical studies on determination of indirect tensile strength of rocks. Rock Mech. Rock Eng. 45, 739–751 (2012). https://doi.org/10.1007/s00603-011-0205-y

    Article  ADS  Google Scholar 

  20. Erarslan, N., Williams, D.J.: Experimental, numerical and analytical studies on tensile strength of rocks. Int. J. Rock Mech. Min. Sci. 49, 21–30 (2012). https://doi.org/10.1016/j.ijrmms.2011.11.007

    Article  Google Scholar 

  21. Feng, G., Kang, Y., Wang, X., et al.: Investigation on the failure characteristics and fracture classification of shale under Brazilian test conditions. Rock Mech. Rock Eng. 53, 3325–3340 (2020). https://doi.org/10.1007/s00603-020-02110-6

    Article  Google Scholar 

  22. He, J., Afolagboye, L.O.: Influence of layer orientation and interlayer bonding force on the mechanical behavior of shale under Brazilian test conditions. Acta Mech. Sin. 34, 349–358 (2018). https://doi.org/10.1007/s10409-017-0666-7

    Article  ADS  Google Scholar 

  23. Imani, M., Nejati, H.R., Goshtasbi, K.: Dynamic response and failure mechanism of Brazilian disk specimens at high strain rate. Soil Dyn. Earthq. Eng. 100, 261–269 (2017). https://doi.org/10.1016/j.soildyn.2017.06.007

    Article  Google Scholar 

  24. Imani, M., Nejati, H.R., Goshtasbi, K., Nazerigivi, A. Effect of brittleness on the micromechanical damage and failure pattern of rock specimens. Smart Struct. Syst. 29(4), 535–547 (2022). https://doi.org/10.12989/SSS.2022.29.4.535

  25. ISRM: The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring; 1974–2006, (2007)

  26. Itasca Consulting Group Inc. PFC3D manual, (2022)

  27. Khanlari, G., Rafiei, B., Abdilor, Y.: Evaluation of strength anisotropy and failure modes of laminated sandstones. Arab. J. Geosci. 8, 3089–3102 (2015). https://doi.org/10.1007/s12517-014-1411-1

    Article  Google Scholar 

  28. Khanlari, G., Rafiei, B., Abdilor, Y.: An experimental investigation of the Brazilian tensile strength and failure patterns of laminated sandstones. Rock Mech. Rock Eng. 48, 843–852 (2015). https://doi.org/10.1007/s00603-014-0576-y

    Article  ADS  Google Scholar 

  29. Lavrov, A., Vervoort, A.: Theoretical treatment of tangential loading effects on the Brazilian test stress distribution. Int. J. Rock Mech. Min. Sci. 39, 275–283 (2002). https://doi.org/10.1016/S1365-1609(02)00010-2

    Article  Google Scholar 

  30. Li, K., Cheng, Y., Yin, Z.-Y., et al.: Size effects in a transversely isotropic rock under brazilian tests: laboratory testing. Rock Mech. Rock Eng. (2020). https://doi.org/10.1007/s00603-020-02058-7

    Article  Google Scholar 

  31. Lin, H., Cao, P., Wang, Y.: Numerical simulation of a layered rock under triaxial compression. Int. J. Rock Mech. Min. Sci. 60, 12–18 (2013). https://doi.org/10.1016/j.ijrmms.2012.12.027

    Article  Google Scholar 

  32. Liu, W.C., Tien, Y.M., Juang, C.H.: Numerical simulation for layered rock under Brazilian test. (2012)

  33. Markides, C.F., Pazis, D.N., Kourkoulis, S.K.: (2010) Influence of friction on the stress field of the Brazilian tensile test. Rock Mech. Rock Eng. 441(44), 113–119 (2010). https://doi.org/10.1007/S00603-010-0115-4

    Article  Google Scholar 

  34. Mokhtari, M., Tutuncu, A.N.: Impact of laminations and natural fractures on rock failure in Brazilian experiments: a case study on green river and niobrara formations. J. Nat. Gas. Sci. Eng. 36, 79–86 (2016). https://doi.org/10.1016/j.jngse.2016.10.015

    Article  Google Scholar 

  35. Park, B., Min, K.-B.: Bonded-particle discrete element modeling of mechanical behavior of transversely isotropic rock. Int. J. Rock Mech. Min. Sci. 76, 243–255 (2015). https://doi.org/10.1016/j.ijrmms.2015.03.014

    Article  Google Scholar 

  36. Park, B., Min, K.-B., Thompson, N., Horsrud, P.: Three-dimensional bonded-particle discrete element modeling of mechanical behavior of transversely isotropic rock. Int. J. Rock Mech. Min. Sci. 110, 120–132 (2018). https://doi.org/10.1016/j.ijrmms.2018.07.018

    Article  Google Scholar 

  37. Pierce, M., Cundall, P., Potyondy, D., Mas Ivars, D.: A synthetic rock mass model for jointed rock. In: Proceedings of the first CA–US rock mechanics symposium, Vancouver, BC. pp 341–349, (2007)

  38. Potyondy, D.O.: A flat-jointed bonded-particle material for hard rock. In: 46th US Rock Mechanics/Geomechanics Symposium 2012. pp 1510–1519, (2012)

  39. Potyondy, D.O., Cundall, P.A.: A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 41, 1329–1364 (2004). https://doi.org/10.1016/j.ijrmms.2004.09.011

    Article  Google Scholar 

  40. Pros, A., Díez, P., Molins, C.: Numerical modeling of the double punch test for plain concrete. Int. J. Solids Struct. 48, 1229–1238 (2011). https://doi.org/10.1016/j.ijsolstr.2011.01.006

    Article  MATH  Google Scholar 

  41. Serati, M., Bahaaddini, M., Roshan, H., et al.: On assessing the tensile cracking pattern in brittle rocks and solids. Bull. Eng. Geol. Environ. 80, 5867–5879 (2021). https://doi.org/10.1007/s10064-021-02249-8

    Article  Google Scholar 

  42. Serati, M., Masoumi, H., Williams, D.J., Alehossein, H.: Modified Brazilian test for indirect measurement of tensile strength of brittle materials. In: 51st U.S. Rock Mech. Symp. ARMA-2017–0834. (2017)

  43. Shabani, F., Kaviani-Hamedani, F.: Cyclic response of sandy subsoil layer under traffic-induced principal stress rotations: Application of bidirectional simple shear apparatus. Soil Dyn. Earthq. Eng. 164(2022), 107573 (2023). https://doi.org/10.1016/j.soildyn.2022.107573

  44. Sun, W., Wu, S., Zhou, Y., Zhou, J.: Comparison of crack processes in single-flawed rock-like material using two bonded–particle models under compression. Arab. J. Geosci. 12, 156 (2019). https://doi.org/10.1007/s12517-019-4327-y

    Article  Google Scholar 

  45. Tan, X., Konietzky, H., Frühwirt, T., Dan, D.Q.: Brazilian tests on transversely isotropic rocks: laboratory testing and numerical simulations. Rock Mech. Rock Eng. 48, 1341–1351 (2015). https://doi.org/10.1007/s00603-014-0629-2

    Article  ADS  Google Scholar 

  46. Tavallali, A., Vervoort, A.: Failure of layered sandstone under Brazilian Test conditions: effect of micro-scale parameters on macro-scale behaviour. Rock Mech. Rock Eng. 43, 641–653 (2010). https://doi.org/10.1007/s00603-010-0084-7

    Article  ADS  Google Scholar 

  47. Tavallali, A., Vervoort, A.: Behaviour of layered sandstone under Brazilian test conditions: layer orientation and shape effects. J. Rock Mech. Geotech. Eng. 5, 366–377 (2013). https://doi.org/10.1016/j.jrmge.2013.01.004

    Article  Google Scholar 

  48. Tavallali, A., Vervoort, A.: Effect of layer orientation on the failure of layered sandstone under Brazilian test conditions. Int. J. Rock Mech. Min. Sci. 47, 313–322 (2010). https://doi.org/10.1016/j.ijrmms.2010.01.001

    Article  Google Scholar 

  49. Vervoort, A., Min, K.-B., Konietzky, H., et al.: Failure of transversely isotropic rock under Brazilian test conditions. Int. J. Rock Mech. Min. Sci. 70, 343–352 (2014). https://doi.org/10.1016/j.ijrmms.2014.04.006

    Article  Google Scholar 

  50. Wang, P., Cai, M., Ren, F.: Anisotropy and directionality of tensile behaviours of a jointed rock mass subjected to numerical Brazilian tests. Tunn. Undergr. Sp. Technol. 73, 139–153 (2018). https://doi.org/10.1016/j.tust.2017.12.018

    Article  Google Scholar 

  51. Wang, Z., Yang, S., Tang, Y.: Mechanical behavior of different sedimentary rocks in the Brazilian test. Bull. Eng. Geol. Environ. 79, 5415–5432 (2020). https://doi.org/10.1007/s10064-020-01906-8

    Article  Google Scholar 

  52. Xu, G., Gutierrez, M., He, C., Meng, W.: Discrete element modeling of transversely isotropic rocks with non-continuous planar fabrics under Brazilian test. Acta Geotech. 15, 2277–2304 (2020). https://doi.org/10.1007/s11440-020-00919-7

    Article  Google Scholar 

  53. Xu, G., He, C., Chen, Z., Wu, D.: Effects of the micro-structure and micro-parameters on the mechanical behaviour of transversely isotropic rock in Brazilian tests. Acta Geotech. 13, 887–910 (2018). https://doi.org/10.1007/s11440-018-0636-7

    Article  Google Scholar 

  54. Yang, S.-Q., Yin, P.-F., Huang, Y.-H.: Experiment and discrete element modelling on strength, deformation and failure behaviour of shale under Brazilian compression. Rock Mech. Rock Eng. 52, 4339–4359 (2019). https://doi.org/10.1007/s00603-019-01847-z

    Article  ADS  Google Scholar 

  55. Yang, S.Q., Huang, Y.H.: Particle flow study on strength and meso-mechanism of Brazilian splitting test for jointed rock mass. Acta Mech. Sin. Xuebao 30, 547–558 (2014). https://doi.org/10.1007/s10409-014-0076-z

    Article  ADS  Google Scholar 

  56. Yin, P.-F., Yang, S.-Q.: Experimental investigation of the strength and failure behavior of layered sandstone under uniaxial compression and Brazilian testing. Acta Geophys. 66, 585–605 (2018). https://doi.org/10.1007/s11600-018-0152-z

    Article  ADS  Google Scholar 

  57. Yu, J., Shang, X., Wu, P.: Influence of pressure distribution and friction on determining mechanical properties in the Brazilian test: theory and experiment. Int. J. Solids Struct. 161, 11–22 (2019). https://doi.org/10.1016/j.ijsolstr.2018.11.002

    Article  Google Scholar 

  58. Yu, Y., Yin, J., Zhong, Z.: Shape effects in the Brazilian tensile strength test and a 3D FEM correction. Int. J. Rock. Mech. Min. Sci. 43, 623–627 (2006)

    Article  Google Scholar 

  59. Yu, Y., Zhang, J., Zhang, J.: A modified Brazilian disk tension test. Int. J. Rock Mech. Min. Sci. 46, 421–425 (2009). https://doi.org/10.1016/j.ijrmms.2008.04.008

    Article  Google Scholar 

  60. Zhao, N.N., Feng, J.L.: Investigation on fracture mechanism of layered slate: experiment and beam-particle method. Environ. Earth Sci. 80, 788 (2021). https://doi.org/10.1007/s12665-021-10106-w

    Article  ADS  Google Scholar 

  61. Zhu, W.C., Tang, C.A.: Numerical simulation of Brazilian disk rock failure under static and dynamic loading. Int. J. Rock Mech. Min. Sci. 43, 236–252 (2006). https://doi.org/10.1016/J.IJRMMS.2005.06.008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Asadizadeh.

Ethics declarations

Conflict of interest

The authors reported no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadizadeh, M., Khosravi, S., Abharian, S. et al. Tensile behavior of layered rock disks under diametral loading: experimental and numerical investigations. Granular Matter 25, 21 (2023). https://doi.org/10.1007/s10035-023-01311-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-023-01311-4

Keywords

Navigation