Skip to main content
Log in

DEM analysis of passive failure in structured sand ground behind a retaining wall

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Assessment of active and passive earth pressures is of crucial importance in design of retaining structures. This paper aims to explore the progressive failure mechanism towards the passive state of natural sand ground, and to quantify the lateral earth pressure, resultant force and overturning moment on the retaining wall under both translational and rotational movement modes. A numerical modelling using the two-dimensional (2D) Discrete Element Method (DEM) is conducted with an advanced micro contact model considering the inter-particle bond strength of natural sand. Rankine theory based semi-analytical solutions of the lateral earth pressure and resultant force/moment have been proposed and compared with the numerical data. The results show that not only the wall movement mode but also the inter-particle bond strength has significant effects on the progressive formation of shear failure zone and mobilization characteristics of earth pressure. The larger the inter-particle bond strength is, the higher the lateral earth pressure can be mobilized, and hence more significant post-peak softening can be produced. The proposed solution can well describe the progressive mobilization of earth pressure towards the passive state and the post-peak softening state at rotational movement modes, potentially optimizing the design of retaining structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Clough, G.W., Ducan, J.M.: Earth pressure. In: van Fang, H.Y. (ed.) Foundation Engineering Handbook, 2nd edn., pp. 223–235. Nostrand Reinhold, New York (1991)

    Chapter  Google Scholar 

  2. Duncan, J.M., Mokwa, R.L.: Passive earth pressures: theories and tests. J. Geotech. Geoenviron. Eng. 127(3), 248–257 (2001)

    Article  Google Scholar 

  3. Patki, M.A., Dewaikar, D.M., Mandal, J.N.: Numerical evaluation of passive earth-pressure coefficients under the effect of surcharge loading. Int. J. Geomech. 17(3), 06016024.1-06016024.15 (2017)

    Article  Google Scholar 

  4. Hu, Z., Yang, Z.X., Wilkinson, S.P.: Analysis of passive earth pressure modification due to seepage flow effects. Can. Geotech. J. 55(5), 666–679 (2018)

    Article  Google Scholar 

  5. Junied, B., Mohd, A.S.: A finite element performance-based approach to correlate movement of a rigid retaining wall with seismic earth pressure. Soil Dyn. Earthq. Eng. 114, 460–479 (2018)

    Article  Google Scholar 

  6. Rowe, P.W., Peaker, K.: Passive earth pressure measurements. Géotechnique 15(1), 57–78 (1965)

    Article  Google Scholar 

  7. Roscoe, K.H.: The influence of strains in soil mechanics. Géotechnique 20(2), 129–170 (1970)

    Article  Google Scholar 

  8. James, R.G., Bransby, P.L.: A velocity field for some passive earth pressure problems. Géotechnique 21(1), 61–83 (1971)

    Article  Google Scholar 

  9. Fang, Y.S., Chen, T.J., Wu, B.F.: Passive earth pressures with various wall movements. J. Geotech. Eng. 120(8), 1307–1323 (1994)

    Article  Google Scholar 

  10. Rao, K.S.S., Nayak, S., Choudhury, D.: Determination of displacement-related passive earth pressure. Geotech. Eng. 35(2), 79–85 (2004)

    Google Scholar 

  11. Mei, G., Chen, Q., Song, L.: Model for predicting displacement-dependent lateral earth pressure. Can. Geotech. J. 46(8), 969–975 (2009)

    Article  Google Scholar 

  12. Mei, G., Chen, R., Liu, J.: New insight into developing mathematical models for predicting deformation-dependent lateral earth pressure. Int. J. Geomech. 17(8), 06017003.1-06017003.5 (2017)

    Article  Google Scholar 

  13. Tang, Y., Li, J.P., Ma, Y.: Lateral earth pressure considering the displacement of a rigid retaining wall. Int. J. Geomech. 18(11), 06018031.1-06018031.12 (2018)

    Article  Google Scholar 

  14. Hu, H., Yang, M., Lin, P., Lin, X.: Passive earth pressures on retaining walls for pit-in-pit excavations. IEEE Access 7, 5918–5931 (2019)

    Article  Google Scholar 

  15. Fang, Y.S., Ho, Y.C., Chen, T.J.: Passive earth pressure with critical state concept. J. Geotech. Geoenviron. Eng. 128(8), 651–659 (2002)

    Article  Google Scholar 

  16. Hanna, A., Khoury, A.I.: Passive earth pressure of overconsolidated cohesionless backfill. J. Geotech. Geoenviron. Eng. 131(8), 978–986 (2005)

    Article  Google Scholar 

  17. Tejchman, J., Bauer, E., Tantono, S.F.: Influence of initial density of cohesionless soil on evolution of passive earth pressure. Acta Geotech. 2(1), 53–63 (2007)

    Article  Google Scholar 

  18. Shiau, J.S., Augarde, C.E., Lyamin, A.V., Sloan, S.W.: Finite element limit analysis of passive earth resistance in cohesionless soils. Soils Found. 48(6), 843–850 (2008)

    Article  Google Scholar 

  19. Benmeddour, D., Mellas, M., Frank, R., Mabrouki, A.: Numerical study of passive and active earth pressures of sands. Comput. Geotech. 40, 34–44 (2012)

    Article  Google Scholar 

  20. Vo, T., Russell, A.R.: Interaction between retaining walls and unsaturated soils in experiments and using slip line theory. J. Eng. Mech. 143(4), 04016120.1-04016120.12 (2017)

    Google Scholar 

  21. Luan, M., Nogami, T.: Variational analysis of earth pressure on a rigid earth-retaining wall. J. Eng. Mech. 123(5), 524–530 (1997)

    Google Scholar 

  22. Soubra, A.H., Macuh, B.: Active and passive earth pressure coefficients by a kinematical approach. Geotech. Eng. 155(2), 119–131 (2002)

    Article  Google Scholar 

  23. Škrabl, S., Macuh, B.: Upper-bound solutions of three-dimensional passive earth pressures. Can. Geotech. J. 42(5), 1449–1460 (2005)

    Article  Google Scholar 

  24. Xu, S.Y., Shamsabadi, A., Taciroglu, E.: Evaluation of active and passive seismic earth pressures considering internal friction and cohesion. Soil Dyn. Earthq. Eng. 70, 30–47 (2015)

    Article  Google Scholar 

  25. Cai, Y.Y., Chen, Q.S., Zhou, Y.T., Nimbalkar, S.S.: Estimation of passive earth pressure against rigid retaining wall considering arching effect in cohesive-frictional backfill under translation mode. Int. J. Geomech. 17(4), 04016093.1-04016093.11 (2017)

    Article  Google Scholar 

  26. Zhu, D.Y., Qian, Q.H., Lee, C.F.: Active and passive critical slip fields for cohesionless soils and calculation of lateral earth pressures. Géotechnique 51(5), 407–423 (2001)

    Article  Google Scholar 

  27. Chang, M.F.: Lateral earth pressures behind rotating walls. Can. Geotech. J. 34(4), 498–509 (1997)

    Article  Google Scholar 

  28. Zhang, J., Shamoto, Y., Tokimatsu, K.: Evaluation of earth pressure under any lateral deformation. Soils Found. 38(1), 15–33 (1998)

    Article  Google Scholar 

  29. James, R.G., Bransby, P.L.: Experimental and theoretical investigations of a passive earth pressure problem. Géotechnique 20(1), 17–37 (1970)

    Article  Google Scholar 

  30. Milligan, G.W.E., Bransby, P.L.: Combined active and passive rotational failure of a retaining wall in sand. Géotechnique 26(3), 473–494 (1976)

    Article  Google Scholar 

  31. Wilson, P., Elgamal, A.: Large-scale passive earth pressure load-displacement tests and numerical simulation. J. Geotech. Geoenviron. Eng. 136(12), 1634–1643 (2010)

    Article  Google Scholar 

  32. Niedostatkiewicz, M., Lesniewska, D., Tejchman, J.: Experimental analysis of shear zone patterns in cohesionless for earth pressure problems using particle image velocimetry. Strain 47(s2), 218–231 (2011)

    Article  Google Scholar 

  33. Gutberlet, C., Katzenbach, R., Hutter, K.: Experimental investigation into the influence of stratification on the passive earth pressure. Acta Geotech. 8(5), 497–507 (2013)

    Article  Google Scholar 

  34. Benmebarek, S., Khelifa, T., Benmebarek, N., Kastner, R.: Numerical evaluation of 3D passive earth pressure coefficients for retaining wall subjected to translation. Comput. Geotech. 35(1), 47–60 (2008)

    Article  Google Scholar 

  35. Widulińsk, L., Tejchman, J., Kozicki, J., Leśniewska, D.: Discrete simulations of shear zone patterning in sand in earth pressure problems of a retaining wall. Int. J. Solids Struct. 48(7–8), 1191–1209 (2011)

    Article  MATH  Google Scholar 

  36. Jiang, M.J., He, J., Wang, J.F., Liu, F.: Distinct simulation of earth pressure against a rigid retaining wall considering inter-particle rolling resistance in sandy backfill. Granul. Matter 16, 797–814 (2014)

    Article  Google Scholar 

  37. Nitka, M., Tejchman, J., Kozicki, J., Leśniewska, D.: DEM analysis of micro-structural events within granular shear zones under passive earth pressure conditions. Granul. Matter 17(3), 325–343 (2015)

    Article  Google Scholar 

  38. Kozicki, J., Tejchman, J.: Investigations of quasi-static vortex structures in 2D sand specimen under passive earth pressure conditions based on DEM and Helmholtz-Hodge vector field decomposition. Granul. Matter 19(2), 31 (2017)

    Article  Google Scholar 

  39. Leroueil, S., Vaughan, P.R.: The general and congruent effects of structure in natural soils and weak rocks. Géotechnique 40(3), 467–488 (1990)

    Article  Google Scholar 

  40. Cuccovillo, T., Coop, M.R.: On the mechanics of structured sands. Géotechnique 49(6), 741–760 (1999)

    Article  Google Scholar 

  41. Shen, Z.F., Jiang, M.J., Wang, S.N.: Static and kinematic damage characterization in structured sand. Acta Geotech. 14(8), 1403–1421 (2019)

    Article  Google Scholar 

  42. Jiang, M.J., Hu, H.J., Liu, F.: Summary of collapsible behaviour of artificially structured loess in oedometer and triaxial wetting tests. Can. Geotech. J. 49(10), 1147–1157 (2012)

    Article  Google Scholar 

  43. Jiang, M.J., Yan, H.B., Zhu, H.H., Utili, S.: Modeling shear behavior and strain localization in cemented sands by two-dimensional distinct element method analyses. Comput. Geotech. 38(1), 14–29 (2011)

    Article  Google Scholar 

  44. Jiang, M.J., Liu, J.D., Sun, Y.G., Yin, Z.Y.: Investigation into macroscopic and microscopic behaviors of bonded sands using the discrete element method. Soils Found. 53(6), 804–819 (2013)

    Article  Google Scholar 

  45. Bell, A.L.: The lateral pressure and resistance of clay and the supporting power of clay foundations. Minutes Proc. Inst. Civ. Eng. 199(1915), 306–336 (1915)

    Google Scholar 

  46. Jiang, M.J., Zhang, W.C.: DEM analyses of shear band in granular materials. Eng. Comput. 32(4), 985–1005 (2015)

    Article  Google Scholar 

  47. Jiang, M.J., Fu, C., Cui, L., Shen, Z.F., Zhu, F.Y.: DEM simulations of methane hydrate exploitation by thermal recovery and depressurization methods. Comput. Geotech. 80, 410–426 (2016)

    Article  Google Scholar 

  48. Cuccovillo, T., Coop, M.R.: Yielding and pre-failure deformation of structured sands. Géotechnique 47(3), 491–508 (1997)

    Article  Google Scholar 

  49. Jiang, M.J., Yu, H.S., Harris, D.: A novel discrete model for granular material incorporating rolling resistance. Comput. Geotech. 32(5), 340–357 (2005)

    Article  Google Scholar 

  50. Wang, Y.H., Leung, S.C.: Characterization of cemented sand by experimental and numerical investigations. J. Geotech. Geoenviron. Eng. 134(7), 992–1004 (2008)

    Article  Google Scholar 

  51. Jiang, M.J., Konrad, J.M., Leroueil, S.: An efficient technique for generating homogeneous specimens for DEM studies. Comput. Geotech. 30(7), 579–597 (2003)

    Article  Google Scholar 

  52. Gudehus, G., Nuebel, K.: Evolution of shear bands in sand. Géotechnique 54(3), 187–201 (2004)

    Article  Google Scholar 

  53. Radjai, F.: Force and fabric states in granular media. In: AIP Conference Proceedings. Proceedings of the 6th International Conference on Micromechanics of Granular Media Golden, Colorado, pp. 35–42 (2009)

  54. Guo, N., Zhao, J.D.: Multiscale insights into classical geomechanics problems. Int. J. Numer. Anal. Methods Geomech. 40, 367–390 (2016)

    Article  Google Scholar 

  55. Altunbas, A., Soltanbeigi, B., Cinicioglu, O.: DEM analysis of passive failure state behind a rigid retaining wall: effect of boundary conditions. E3S Web Conf. 92, 14012 (2019)

    Article  Google Scholar 

  56. Jiang, M.J., Yin, Z.Y., Shen, Z.F.: Shear band formation in lunar regolith by discrete element analyses. Granul. Matter 18(2), 1–14 (2016)

    Article  Google Scholar 

  57. Jiang, M.J., He, J.: A distinct element analysis of critical state passive earth pressure against a rigid wall using a rolling resistance contact model. Rock Soil Mech. 36(10), 2996–3006 (2015). ((in Chinese))

    Google Scholar 

  58. Zhang, W., Wang, D., Randolph, M.F., Puzrin, A.M.: Catastrophic failure in planar landslides with a fully softened weak zone. Géotechnique 65(9), 755–769 (2015)

    Article  Google Scholar 

  59. Jiang, M.J., Zhu, F.Y., Liu, F., Utili, S.: A bond contact model for methane hydrate-bearing sediments with interparticle cementation. Int. J. Numer. Anal. Methods Geomech. 38, 1823–1854 (2014)

    Article  Google Scholar 

  60. Jiang, M.J., Shen, Z.F., Zhu, F.Y.: Numerical analyses of braced excavation in granular grounds: continuum and discrete element approaches. Granul. Matter 15(2), 195–208 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The research has been supported by the National Natural Science Foundation of China with Grant Nos. 51579178 and 51639008, which are all greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingjing Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

A series of numerical biaxial compression tests were performed with a strain rate of 5%/min under five different confining pressures, i.e., 50 kPa, 100 kPa, 200 kPa, 400 kPa and 500 kPa. The grain size distribution is uniform in all specimens and provided in Fig. 16a in comparison with the Ottawa sand adopted by Wang and Leung [50]. To achieve computational efficiency, the DEM particles were enlarged by a certain scale maintaining almost the same grain size distribution curve with the realistic sands, as adopted in other studies [43, 46, 59, 60]. As has been investigated by [35,36,37], the magnitude of d50 would not make an appreciable difference to the strain localization patterns and the Eh − savg/h relationship, though a relatively large d50 can lead to a slightly increase of the shear band width and the peak resultant force Ep.

Fig. 16
figure 16

Properties of the used granular materials through DEM elementary tests in comparison with experiments by Wang and Leung [50]

It can be seen from Fig. 16b–e that, the numerical results can well capture the cementation effect on the mechanical properties of granular soils: (a) the higher the cementation level, the higher the peak strength; (b) the residual strength is almost independent of the cementation level. Moreover, the peak friction angles (30.21º–31.73º, as listed in Table 1) from the numerical modelling is rather comparable to the experimental values (28.6º–32.1º).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, M., Niu, M. & Zhang, W. DEM analysis of passive failure in structured sand ground behind a retaining wall. Granular Matter 24, 61 (2022). https://doi.org/10.1007/s10035-022-01220-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-022-01220-y

Keywords

Navigation