Skip to main content
Log in

Compaction of bi-dispersed granular packing: analogy with chemical thermodynamics

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The study of particle-packing models for bi-dispersed packings is important in the field of granular materials, from both theoretical and practical perspectives. Several particle-packing models have been developed for predicting the packing density (or specific volume) of a bi-dispersed packing. Most of the currently available models are phenomenological, which predict the specific volumes of a bi-dispersed packing as a function of fraction of species, and have applied to various fields, such as in concrete, pharmaceutical, soil engineering, etc. In this study, we analyze the packing densities of granular mixtures using an analogy to the thermodynamic theory for chemical solutions. The thermodynamic theory for chemical solutions provides the connections among the bulk solution density, the chemical interaction activities between species, and the concentration of each species in the solution. Parallel to the chemical potential of each species in the solution, we introduce an “excess free volume potential” for each granular species. With the interaction activities of two species in a bi-dispersed granular system, we explain the volume compaction behavior of a granular system from a new context. Subsequently, using the second law of thermodynamics, an analytical method is proposed to quantify the excess free volume potentials and to predict the density of a granular mixture. The developed analytical method is then validated by the experimental results of bi-dispersed packing mixtures of glass beads and silica sands. The performance of the analytical method and its validity are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(V\) :

Total volume of a bi-dispersed packing

\(\upsilon\) :

Specific volume of a bi-dispersed packing

\(V_{1}^{0} ,V_{2}^{0}\) :

Total volumes of each component in mono-dispersed packing state

\(\upsilon _{1}^{0}, \upsilon _{2}^{0}\) :

Specific volumes of each component in mono-dispersed packing state

\(N_{1} ,N_{2}\) :

Total number of large particles and small particles in a bi-dispersed packing

\(y_{1} ,y_{2}\) :

Solid volume fraction of each component in a bi-dispersed packing

\({\text{v}}_{1}^{g}, {\text{v}}_{2}^{g}\) :

Particle solid volume of each component in a bi-dispersed packing

\(d_{1} ,d_{2}\) :

Particle size of each component in a bi-dispersed packing

\({\text{v}}_{1}^{m}, {\text{v}}_{2}^{m}\) :

Particle volume potential of the mth particle of each component in a bi-dispersed packing

\({\text{v}}_{1}^{0} ,{\text{v}}_{2}^{0}\) :

Average particle volume potential of each component in mono-dispersed packing state

\({\text{v}}_{1} ,{\text{v}}_{2}\) :

Average particle volume potential of each component in a bi-dispersed packing

X :

Compactivity (granular temperature)

S :

Granular entropy

\(V^{\prime}, V\) :

Internal volume potential, Gibbs volume potential

\(\zeta\) :

Extent of reaction

\(\Delta V\) :

Excess free volume potential of the bi-dispersed packing

\(\Delta {\text{v}}_{1} ,\Delta {\text{v}}_{2}\) :

Excess free volume potential for each component in a bi-dispersed packing

\(\alpha _{1}, \alpha _{2}\) :

Interaction activity coefficients for each component in a bi-dispersed packing

\(r_{i}\) :

Particle size ratio

\(\eta _{1}, \eta _{2} (\eta)\) :

Material parameter for each component (averaged value)

\(\bar{x}\) :

Internal state variable

References

  1. An, X.Z.: Densification of the packing structure under vibrations. Int. J. Miner. Metall. Mater. 20, 499–503 (2013). https://doi.org/10.1007/s12613-013-0757-9

    Article  Google Scholar 

  2. Aste, T., Saadatfar, M., Senden, J.T.: Local and global relations between the number of contacts and density in monodisperse sphere packs. J. Stat. Mech. (2006). https://doi.org/10.1088/1742-5468/2006/07/P07010

    Article  Google Scholar 

  3. ASTM D4253-00: Standard test methods for maximum index density and unit weight of soils using a vibratory table. In: Annual Book of ASTM Standards. ASTM International, West Conshohocken, pp. 1–15 (2006). https://doi.org/10.1520/D4253-00R06

  4. Atkins, P., dePaula, J.: Section 5.9, the activities of ions in solution. In: Physical Chemisrry, 8th edn. OUP. ISBN: 9780198700722 (2006)

  5. Baule, A., Morone, F., Herrmann, H.J., Makse, H.A.: Edwards statistical mechanics for jammed granular matter. Rev. Mod. Phys. 90, 15006 (2018). https://doi.org/10.1103/RevModPhys.90.015006

    Article  ADS  MathSciNet  Google Scholar 

  6. Blumenfeld, R., Amitai, S., Jordan, J., Hihinashvili, R.: Failure of the volume function in granular statistical mechanics. Phys. Rev. Lett. 116, 148001 (2016)

    Article  ADS  Google Scholar 

  7. Blumenfeld, R., Edwards, S.: Geometric partition functions of cellular systems: explicit calculation of the entropy in two and three dimensions. Eur. Phys. J. E 19, 23–30 (2006)

    Article  Google Scholar 

  8. Blumenfeld, R., Edwards, S.F.: On granular stress statistics: compactivity, angoricity, and some ppen issues. J. Phys. Chem. B 113, 3981–3987 (2009). https://doi.org/10.1021/jp809768y

    Article  Google Scholar 

  9. BS 182: Testing Aggregates Part 2: Methods of Determination of Density. British Standards Institution (1995)

    Google Scholar 

  10. Chang, C.S., Deng, Y.: A particle packing model for sand–silt mixtures with the effect of dual-skeleton. Granul. Matter (2017). https://doi.org/10.1007/s10035-017-0762-1

    Article  Google Scholar 

  11. Cheng, G., Yu, A., Zulli, P.: Evaluation of effective thermal conductivity from the structure of a packed bed. Chem. Eng. Sci. 54, 4199–4209 (1999)

    Article  Google Scholar 

  12. Cho, Y.T.: The Study of GCTS Triaxial Apparatus Function and Mixing Sand Void Ratio. National Taiwan University (2014)

    Google Scholar 

  13. Clarke, A.S., Wiley, J.D.: Numerical simulation of the dense random packing of a binary mixture of hard spheres: amorphous metals. Phys. Rev. B 35, 7350–7356 (1987). https://doi.org/10.1103/PhysRevB.35.7350

    Article  ADS  Google Scholar 

  14. Coleman, B., Gurtin, M.: Thermodynamics with internal state variables. J. Chem. Phys. 47, 597 (1967). https://doi.org/10.1063/1.1711937

    Article  ADS  Google Scholar 

  15. da Cruz, F., Lechenault, F., Dauchot, O., Bertin, E.: Free volume distributions inside a bidimensional granular medium. In: Herrmann, H.J., Garcia-Rojo, R., McNamara, S. (eds.) Powders and Grains 2005. CRC Press, Stuttgart (2005)

    Google Scholar 

  16. Danisch, M., Jin, Y., Makse, H.A.: Model of random packings of different size balls. Phys. Rev. E 81, 051303 (2010). https://doi.org/10.1103/PhysRevE.81.051303

    Article  ADS  Google Scholar 

  17. De Larrard, F.: Concrete Mixture Proportioning: A Scientific Approach. E & FN SPON, London (1999)

    Book  Google Scholar 

  18. Desmond, K.W., Weeks, E.R.: Influence of particle size distribution on random close packing of spheres. Phys. Rev. E 90, 022204 (2014). https://doi.org/10.1103/PhysRevE.90.022204

    Article  ADS  Google Scholar 

  19. Dewar, J.D.: Computer Modelling of Concrete Mixtures. E & FN Spon, London (1999)

    Book  Google Scholar 

  20. Dutt, M., Elliott, J.A.: Granular dynamics simulations of the effect of grain size dispersity on uniaxially compacted powder blends. Granul. Matter 16, 243–248 (2014). https://doi.org/10.1007/s10035-013-0463-3

    Article  Google Scholar 

  21. Edwards, S.F.: New kinds of entropy. J. Stat. Phys. 116, 29–42 (2004). https://doi.org/10.1023/B:JOSS.0000037233.36686.2f

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Edwards, S.F., Grinev, D.V.: Compactivity and transmission of stress in granular materials. Chaos 9, 551–558 (1999). https://doi.org/10.1063/1.166429

    Article  ADS  MATH  Google Scholar 

  23. Edwards, S.F., Oakeshott, R.B.S.: Theory of powders. Physica A 157, 1080–1090 (1989). https://doi.org/10.1016/0378-4371(89)90034-4

    Article  ADS  MathSciNet  Google Scholar 

  24. Fourie, A.B., Papageorigou, G.: Defining an appropriate steady state line for Merriespruit gold tailings. Can. Geotech. J. 38, 695–706 (2001). https://doi.org/10.1139/cgj-38-4-695

    Article  Google Scholar 

  25. Fuggle, A.R., Roozbahani, M.M., Frost, J.D.: Size effects on the void ratio of loosely packed binary particle mixtures. In: Abu-Farsakh, M., Yu, X., Hoyos, L.R. (eds.) Geo-Congress 2014 Technical Papers, pp. 129–138. American Society of Civil Engineers, Atlanta (2014). https://doi.org/10.1061/9780784413272.014

    Chapter  Google Scholar 

  26. Ge, X., Wang, X., Zhang, M., Seetharaman, S.: Correlation and prediction of activity and osmotic coefficients of aqueous electrolytes at 298.15 K by the modified TCPC model. J. Chem. Eng. Data 52(2), 538–547 (2007). https://doi.org/10.1021/je060451k.ISSN0021-9568

    Article  Google Scholar 

  27. Goltermann, P., Johansen, V., Palbøl, L.: Packing of aggregates: an alternative tool to determine the optimal aggregate mix. ACI Mater. J. 94, 435–443 (1997)

    Google Scholar 

  28. Holtz, R.D., Kovacs, W.D., Sheahan, T.C.: An Introduction to Geotechnical Engineering, 2nd edn. Pearson, Upper Saddle River (2011)

    Google Scholar 

  29. Hopkins, A.B., Stillinger, F.H., Torquato, S.: Disordered strictly jammed binary sphere packings attain an anomalously large range of densities. Phys. Rev. E 88, 022205 (2013). https://doi.org/10.1103/PhysRevE.88.022205

    Article  ADS  Google Scholar 

  30. Horstemeyer, M., Bammann, D.: Historical review of internal state variable theory for inelasticity. Int. J. Plast. 26(9), 1310–1334 (2010). https://doi.org/10.1016/j.ijplas.2010.06.005

    Article  MATH  Google Scholar 

  31. Jalali, P., Li, M.: Model for estimation of critical packing density in polydisperse hard-disk packings. Physica A 381, 230–238 (2007). https://doi.org/10.1016/j.physa.2007.03.024

    Article  ADS  Google Scholar 

  32. Jin, Y., Makse, H.A.: A first-order phase transition defines the random close packing of hard spheres. Physica A (Amsterdam) 389, 5362 (2010)

    Article  ADS  Google Scholar 

  33. Kelly, E.G., Spottiswood, D.J.: Introduction to Mineral Processing. Wiley, New York (1982)

    Google Scholar 

  34. Kumar, N., Magnanimo, V., Ramaioli, M., Luding, S.: Tuning the bulk properties of bidisperse granular mixtures by small amount of fines. Powder Technol. 293, 94–112 (2016). https://doi.org/10.1016/j.powtec.2015.11.042

    Article  Google Scholar 

  35. Kwan, A.K.H., Chan, K.W., Wong, V.: A 3-parameter particle packing model incorporating the wedging effect. Powder Technol. 237, 172–179 (2013). https://doi.org/10.1016/j.powtec.2013.01.043

    Article  Google Scholar 

  36. Lade, P.V., Liggio, C.D., Yamamuro, J.A.: Effects of non-plastic fines on minimum and maximum void ratios of sand. Geotech. Test. J. 21, 336–347 (1998). https://doi.org/10.1520/GTJ11373J

    Article  Google Scholar 

  37. Lade, P.V., Yamamuro, J.A.: Effects of nonplastic fines on static liquefaction of sands. Can. Geotech. J. 34, 918–928 (1997). https://doi.org/10.1139/t97-052

    Article  Google Scholar 

  38. Lange, K.D., Wouterse, A., Philipse, A.: Simulation of random packing of binary sphere mixtures by mechanical contraction. Phys. A Stat. Mech. Appl. 358, 249–262 (2005). https://doi.org/10.1016/j.physa.2005.03.057

    Article  Google Scholar 

  39. Liu, W., Li, S., Baule, A., Makse, H.A.: Adhesive loose packings of small dry particles. Soft Matter 11(32), 6492–6498 (2015)

    Article  ADS  Google Scholar 

  40. Martin, C.L., Bouvard, D.: Isostatic compaction of bimodal powder mixtures and composites. Int. J. Mech. Sci. 46, 907–927 (2004). https://doi.org/10.1016/j.ijmecsci.2004.05.012

    Article  MATH  Google Scholar 

  41. Maugin, G.A.: The Thermomechanics of Plasticity and Fracture. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  42. Meyer, S., Song, C., Jin, Y., Wang, K., Makse, H.: Jamming in two-dimensional packings. Physica (Amsterdam) 389, 5137 (2010)

    Article  ADS  Google Scholar 

  43. Muzzio, F.J., Shinbrot, T., Glasser, B.J.: Powder technology in the pharmaceutical industry: the need to catch up fast. Powder Technol. 124, 1–7 (2002). https://doi.org/10.1016/S0032-5910(01)00482-X

    Article  Google Scholar 

  44. Nowak, E.R., Knight, J.B., Ben-Naim, E., Jaeger, H.M., Nagel, S.R.: Density fluctuations in vibrated granular materials. Phys. Rev. E 57, 1971–1982 (1998). https://doi.org/10.1103/PhysRevE.57.1971

    Article  ADS  Google Scholar 

  45. Ogarko, V., Luding, S.: Prediction of polydisperse hard-sphere mixture behavior using tridisperse systems. Soft Matter 9, 9530–9534 (2013). https://doi.org/10.1039/c3sm50964h

    Article  ADS  Google Scholar 

  46. Rhodes, M.: Introduction to Particle Technology, 2nd edn. Wiley, West Sussex (2008)

    Book  Google Scholar 

  47. Rockwood, A.L.: Meaning and measurability of single-ion activities, the thermodynamic foundations of pH, and the Gibbs free energy for the transfer of ions between dissimilar materials. ChemPhysChem 16(9), 1978–1991 (2015). https://doi.org/10.1002/cphc.201500044.ISSN1439-4235.PMC4501315.PMID25919971

    Article  Google Scholar 

  48. Roquier, G.: The 4-parameter Compressible Packing Model (CPM) including a new theory about wall effect and loosening effect for spheres. Powder Technol. 302, 247–253 (2016). https://doi.org/10.1016/j.powtec.2016.08.031

    Article  Google Scholar 

  49. Santiso, E., Müller, E.: Dense packing of binary and polydisperse hard spheres. Mol. Phys. 100, 2461–2469 (2002). https://doi.org/10.1080/00268970210125313

    Article  ADS  Google Scholar 

  50. Skrinjar, O., Larsson, P.: On discrete element modelling of compaction of powders with size ratio. Comput. Mater. Sci. 31, 131–146 (2004). https://doi.org/10.1016/j.commatsci.2004.02.005

    Article  Google Scholar 

  51. Song, C., Havlin, S., Makes, H.A.: Self-similarity of complex networks. Nature 433(7024), 392–395 (2005)

    Article  ADS  Google Scholar 

  52. Song, C., Wang, P., Makse, H.A.: A phase diagram for jammed matter. Nature (London) 453, 629 (2008)

    Article  ADS  Google Scholar 

  53. Stovall, T., de Larrard, F., Buil, M.: Linear packing density model of grain mixtures. Powder Technol. 48, 1–12 (1986). https://doi.org/10.1016/0032-5910(86)80058-4

    Article  Google Scholar 

  54. Thevanayagam, S., Shenthan, T., Mohan, S., Liang, J.: Undrained fragility of clean sands, silty sands, and sandy silts. J. Geotech. Geoenviron. Eng. 128, 849–859 (2002). https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(849)

    Article  Google Scholar 

  55. Ueda, T., Matsushima, T., Yamada, Y.: Effect of particle size ratio and volume fraction on shear strength of binary granular mixture. Granul. Matter 13, 731–742 (2011). https://doi.org/10.1007/s10035-011-0292-1

    Article  Google Scholar 

  56. Voivret, C., Radjaï, J., Delenne, J.-Y., Youssoufi, M.S.E.: Space-filling properties of polydisperse granular media. Phys. Rev. E 76, 021301 (2007). https://doi.org/10.1103/PhysRevE.76.021301

    Article  ADS  MATH  Google Scholar 

  57. Yang, S.L.: Characterization of the Properties of Sand–Silt Mixtures. Norwegian University of Science and Technology (2004)

    Google Scholar 

  58. Yi, L.Y., Dong, K.J., Zou, R.P., Yu, A.B.: Radical tessellation of the packing of ternary mixtures of spheres. Powder Technol. 224, 129–137 (2012). https://doi.org/10.1016/j.powtec.2012.02.042

    Article  Google Scholar 

  59. Yilmaz, Y.: A study on the limit void ratio characteristics of medium to fine mixed graded sands. Eng. Geol. 104, 290–294 (2009). https://doi.org/10.1016/j.enggeo.2008.11.009

    Article  Google Scholar 

  60. Yu, A.B., Standish, N.: An analytical-parametric theory of the random packing of particles. Power Technol. 55, 171–186 (1988). https://doi.org/10.1016/0032-5910(88)80101-3

    Article  Google Scholar 

  61. Yu, A.B., Standish, N.: Porosity calculations of multi-component mixtures of spherical particles. Powder Technol. 52, 233–241 (1987). https://doi.org/10.1016/0032-5910(87)80110-9

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of the United States under a research grant (CMMI-1917238). The support is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching S. Chang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, C.S., Deng, Y. Compaction of bi-dispersed granular packing: analogy with chemical thermodynamics. Granular Matter 24, 58 (2022). https://doi.org/10.1007/s10035-022-01219-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-022-01219-5

Keywords

Navigation