Skip to main content
Log in

Fabric rates of elliptical particle assembly in monotonic and cyclic simple shear tests: a numerical study

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

This paper aims to investigate the evolutions of microscopic structures of elliptical particle assemblies in both monotonic and cyclic constant volume simple shear tests using the discrete element method. Microscopic structures, such as particle orientations, contact normals and contact forces, were obtained from the simulations. Elliptical particles with the same aspect ratio (1.4 and 1.7 respectively for the two specimens) were generated with random particle directions, compacted in layers, and then precompressed to a low pressure one-dimensionally to produce an inherently anisotropic specimen. The specimens were sheared in two perpendicular directions (shear mode I and II) in a strain-rate controlled way so that the effects of inherent anisotropy can be examined. The anisotropy of particle orientation increases and the principal direction of particle orientation rotates with the shearing of the specimen in the monotonic tests. The shear mode can affect the way fabric anisotropy rate of particle orientation responds to shear strain as a result of the initial anisotropy. The particle aspect ratio exhibits quantitative influence on some fabric rates, including particle orientation, contact normal and sliding contact normal. The fabric rates of contact normal, sliding contact normal, contact force, strong and weak contact forces fluctuate dramatically around zero after the shear strain exceeds 4 % in the monotonic tests and throughout the cyclic tests. Fabric rates of contact normals and forces are much larger than that of particle orientation. The particle orientation based fabric tensor is harder to evolve than the contact normal or contact force based because the reorientation of particles is more difficult than that of contacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Oda, M., Nematc-Nasser, S., Mehrabadi, M.M.: A statistical study of fabric in a random assembly of spherical granules. Int. J. Numer. Anal. Mech. Geomech. 6(1), 77–94 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Satake, M.: Fabric tensor in granular materials. In: Proceedings of the IUTAM Symposium on Deformation and Failure of Granular Materials. Delft, Rotterdam, pp. 63–68 (1982)

  3. Oda, M., Iwashita, K.: Mechanics of Granular Materials. A. A. Balkema, Rotterdam (1999)

    Google Scholar 

  4. Yimsiri, S., Soga, K.: Micromechanics-based stress–strain behaviour of soils at small strains. Géotechnique 50(5), 559–571 (2000)

    Article  Google Scholar 

  5. Chang, C.S., Hicher, P.Y.: An elasto-plastic model for granular materials with microstructural consideration. Int. J. Solids Struct. 42(14), 4258–4277 (2005)

    Article  MATH  Google Scholar 

  6. Nemat-Nasser, S.: A micromechanically-based constitutive model for frictional deformation of granular materials. J. Mech. Phys. Solids 48(6), 1541–1563 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Rothenburg, L., Bathurst, R.J., Dusseault, M.B.: Micromechanical ideas in constitutive modelling of granular materials. In: Proceedings of the International Conference on Micromechanics of Granular Media. Powders Grains, pp. 355–363. A.A. Balkema, Rotterdam (1989)

  8. Ouadfel, H., Rothenburg, L.: Stress–force–fabric’relationship for assemblies of ellipsoids. Mech. Mater. 33(4), 201–221 (2001)

    Article  Google Scholar 

  9. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  10. Fonseca, J., Reyes-Aldasoro, C.C., O’Sullivan, C., Coop, M.R.: Experimental investigation into the primary fabric of stress transmitting particles. In: Proceedings of the International Symposium on Geomechanics from Micro to Macro, pp. 1019–1024, Cambridge (2014)

  11. Calvetti, F., Combe, G., Lanier, J.: Experimental micromechanical analysis of a 2D granular material: relation between structure evolution and loading path. Mech. Cohes. Frict. Mater. 2(2), 121–163 (1997)

    Article  Google Scholar 

  12. Kruyt, N.P.: Micromechanical study of fabric evolution in quasi-static deformation of granular materials. Mech. Mater. 44(1), 120–129 (2012)

    Article  Google Scholar 

  13. Yimsiri, S., Soga, K.: DEM analysis of soil fabric effects on behaviour of sand. Géotechnique 60(6), 483–495 (2010)

    Article  Google Scholar 

  14. Kuhn, M.R.: Micro-mechanics of fabric and failure in granular materials. Mech. Mater. 42(9), 827–840 (2010)

    Article  Google Scholar 

  15. O’Sullivan, C., Cui, L.: Fabric evolution in granular materials subject to drained, strain controlled cyclic loading. In: Proceedings of the 6th International Conference on Micromechanics of Granular Media, pp. 285–288. AIP, Golden (2009)

  16. Bosko, J.T., Tordesillas, A.: Evolution of Contact Forces, Fabric, and Their Collective Behavior in Granular Media Under Deformation: A DEM Study. Engineering, Construction, and Operations in Challenging Environment, pp. 1–8. ASCE (2006)

  17. Ng, T.-T.: Fabric evolution of ellipsoidal arrays with different particle shapes. J. Eng. Mech. 127(10), 994–999 (2001)

    Article  Google Scholar 

  18. Anandarajah, A.: On influence of fabric anisotropy on the stress–strain behavior of clays. Comput. Geotech. 27(1), 1–17 (2000)

    Article  Google Scholar 

  19. Bathurst, R.J., Rothenburg, L.: Investigation of micromechanical features of idealized granular assemblies using DEM. Eng. Comput. 9(2), 199–210 (1992)

    Article  Google Scholar 

  20. Nouguier-Lehon, C.: Effect of the grain elongation on the behaviour of granular materials in biaxial compression. Comptes Rendus Mécanique 338(10), 587–595 (2010)

    Article  ADS  MATH  Google Scholar 

  21. Zhao, J.D., Guo, N.: The interplay between anisotropy and strain localisation in granular soils: a multiscale insight. Géotechnique 65(8), 642–656 (2015)

    Article  MathSciNet  Google Scholar 

  22. Fu, P.C., Dafalias, Y.F.: Study of anisotropic shear strength of granular materials using DEM simulation. Int. J. Numer. Anal. Mech. Geomech. 35(10), 1098–1126 (2011)

    Article  Google Scholar 

  23. Sazzad, M.M., Suzuki, K.: Micromechanical behavior of granular materials with inherent anisotropy under cyclic loading using 2D DEM. Granul. Matter 12(6), 597–605 (2010)

    Article  MATH  Google Scholar 

  24. Kuhn M.R.: OVAL and OVALPLOT: Programs for Analyzing Dense Particle Assemblies with the Discrete Element Method (2006). http://faculty.up.edu/kuhn/oval/doc/oval_0618.pdf

  25. Shodja, H.M., Nezami, E.G.: A micromechanical study of rolling and sliding contacts in assemblies of oval granules. Int. J. Numer. Anal. Mech. Geomech. 27(5), 403–424 (2003)

    Article  MATH  Google Scholar 

  26. Mustoe, G.G.W., Miyata, M.: Material flow analyses of noncircular-shaped granular media using discrete element methods. J. Eng. Mech. 127(10), 1017–1026 (2001)

    Article  Google Scholar 

  27. Favier, J.F., Abbaspour-Fard, M.H., Kremmer, M.: Modeling nonspherical particles using multisphere discrete elements. J. Eng. Mech. 127(10), 971–977 (2001)

    Article  Google Scholar 

  28. Ouadfel, H., Rothenburg, L.: An algorithm for detecting inter-ellipsoid contacts. Comput. Geotech. 24(4), 245–263 (1999)

    Article  Google Scholar 

  29. Wang, C.Y., Liang, V.C.: A packing generation scheme for the granular assemblies with planar elliptical particles. Int. J. Numer. Anal. Mech. Geomech. 21(5), 347–358 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lin, X.S., Ng, T.-T.: A three-dimensional discrete element model using arrays of ellipsoids. Géotechnique 47(2), 319–329 (1997)

    Article  Google Scholar 

  31. Lin, X.S., Ng, T.-T.: Contact detection algorithms for three-dimensional ellipsoids in discrete element modelling. Int. J. Numer. Anal. Mech. Geomech. 19(9), 653–659 (1995)

    Article  MATH  Google Scholar 

  32. Ng, T.-T.: Numerical simulations of granular soil using elliptical particles. Comput. Geotech. 16(2), 153–169 (1994)

    Article  Google Scholar 

  33. Ting, J.M., Khwaja, M., Meachum, L.R., Rowell, J.D.: An ellipsec-based discrete element model for granular materials. Int. J. Numer. Anal. Mech. Geomech. 17(9), 603–623 (1993)

    Article  MATH  Google Scholar 

  34. Ting, J.M., Corkum, B.T.: Computational laboratory for discrete element geomechanics. J. Comput. Civil Eng. 6(2), 129–146 (1992)

    Article  Google Scholar 

  35. Ting, J.M.: A robust algorithm for ellipse-based discrete element modelling of granular materials. Comput. Geotech. 13(3), 175–186 (1992)

    Article  Google Scholar 

  36. Rothenburg, L., Bathurst, R.J.: Micromechanical features of granular assemblies with planar elliptical particles. Géotechnique 42(1), 79–95 (1992)

  37. Rothenburg, L., Bathurst, R.J.: Numerical simulation of idealized granular assemblies with plane elliptical particles. Comput. Geotech. 11(4), 315–329 (1991)

    Article  Google Scholar 

  38. Ting, J.M., Meachum, L., Rowell, J.D.: Effect of particle shape on the strength and deformation mechanisms of ellipse-shaped granular assemblages. Eng. Comput. 12(2), 99–108 (1995)

    Article  Google Scholar 

  39. Jiang, M.J., Konrad, J.M., Leroueil, S.: An efficient technique for generating homogeneous specimens for DEM studies. Comput. Geotech. 30(7), 579–597 (2003)

    Article  Google Scholar 

  40. Jiang, M.J., Leroueil, S., Konrad, J.M.: Insight into shear strength functions of unsaturated granulates by DEM analyses. Comput. Geotech. 31(6), 473–489 (2004)

    Article  Google Scholar 

  41. Currary, J.R.: The analysis of two-dimensional orientation data. J. Geol. 64(2), 117–131 (1956)

    Article  ADS  Google Scholar 

  42. Thornton, C.: Numerical simulations of deviatoric shear deformation of granular media. Géotechnique 50(1), 43–53 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The work reported here has been supported by the China National Natural Science Foundation with Grant No. 51579178, the National Basic Research Program of China with Grant Nos. 2011CB013504 and 2014CB046901 and State Key Lab. of Disaster Reduction in Civil Engineering with Grant No. SLDRCE14-A-04. The authors also thank Dr. Liqing Li and Mr. Chang Fu for their involvement in the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingjing Jiang.

Additional information

This article is part of the Topical Collection on Micro origins for macro behavior of granular matter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, M., Li, T. & Shen, Z. Fabric rates of elliptical particle assembly in monotonic and cyclic simple shear tests: a numerical study. Granular Matter 18, 54 (2016). https://doi.org/10.1007/s10035-016-0641-1

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-016-0641-1

Keywords

Navigation