Skip to main content
Log in

Tunnel excavation in granular media: the role of force chains

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We investigate how force chains in a granular packing influence and change during a tunnel excavation process. A two-dimensional (2D) frictional cohensionless packing is considered under gravity and a set of contiguous particles are removed in the interior. Using discrete element simulations on realistic non-spherical soil grains, we investigate the role of force chains in the stability of the resulting tunnel. We illustrate that force disturbance due to excavation is transmitted over considerable distance by force chains. Such force chains behave as one-dimensional (1D) load carrying members, leading to nonlocal influences on tunnel stability as these chains rearrange around tunnels. Based on these observations, we posit the non-existence of a local stability prediction criterion that examines only the set of grains adjacent to the tunnel boundary. Finally, we study the mechanics of transition to the new equilibrium configuration by examining how the various components of force disturbance vary with distance from the tunnel. This work lays the framework for a systematic analysis of granular excavation process by examining how forces applied in the domain interior are transmitted into the granular media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Jaeger, Heinrich M, Nagel, Sidney R, Behringer, Robert P: Granular solids, liquids, and gases. Rev. Modern Phys. 68(4), 1259 (1996)

    Article  ADS  Google Scholar 

  2. Sokolovskii, Vadim Vasil’evich: Statics of granular media. Elsevier (2016)

  3. Hurley, R.C., Hall, S.A., Andrade, J.E., Wright, J.: Quantifying interparticle forces and heterogeneity in 3d granular materials. Phys. Rev. Lett. 117, 098005 (Aug 2016)

  4. Voivret, C., Radjaï, F., Delenne, J.-Y., El Youssoufi, M.S.: Multiscale force networks in highly polydisperse granular media. Phys. Rev. Lett. 102, 178001 (Apr 2009)

  5. Forterre, Yoël, Pouliquen, Olivier: Flows of dense granular media. Annu. Rev. Fluid Mech. 40, 1–24 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  6. Henann, David L., Kamrin, Ken: Continuum thermomechanics of the nonlocal granular rheology. Int. J. Plasticity 60, 145–162 (2014)

    Article  Google Scholar 

  7. Majmudar, TS., Sperl, M., Luding, Stefan, Behringer, Robert P.: Jamming transition in granular systems. Physical review letters, 98(5):058001 (2007)

  8. Behringer, Robert P., Chakraborty, Bulbul: The physics of jamming for granular materials: a review. Reports on Progress in Physics, 82(1):012601, (nov 2018)

  9. Hidalgo, R.C., Lozano, C., Zuriguel, I., Garcimartín, A.: Force analysis of clogging arches in a silo. Granular Matter 15(6), 841–848 (2013)

    Article  Google Scholar 

  10. Zuriguel, Iker: Invited review: Clogging of granular materials in bottlenecks. arXiv preprintarXiv:1412.5806 (2014)

  11. Zuriguel, Iker, Parisi, Daniel Ricardo, Hidalgo, Raúl Cruz, Lozano, Celia, Janda, Alvaro, Gago, Paula Alejandra, Peralta, Juan Pablo, Ferrer, Luis Miguel, Pugnaloni, Luis Ariel, Clément, Eric, et al. Clogging transition of many-particle systems flowing through bottlenecks. Scientific reports, 4:7324 (2014)

  12. Suhas, BS.: Brief study of automation in mining industries. the nation, 1:2 (2020)

  13. Goldenberg, C., Goldhirsch, I.: Friction enhances elasticity in granular solids. Nature 435(7039), 188 (2005)

    Article  ADS  Google Scholar 

  14. Liu, C-h: Sydney R Nagel, DA Schecter, SN Coppersmith, Satya Majumdar, Onuttom Narayan, and TA Witten. Force fluctuations in bead packs. Sci. 269(5223), 513–515 (1995)

    Google Scholar 

  15. Da Silva, Miguel, Rajchenbach, Jean: Stress transmission through a model system of cohesionless elastic grains. Nature 406(6797), 708 (2000)

    Article  ADS  Google Scholar 

  16. Geng, Junfei, Howell, D., Longhi, E., Behringer, RP., Reydellet, G., Vanel, L., Clément, E., Luding, S.: Footprints in sand: the response of a granular material to local perturbations. Physical Review Letters, 87(3):035506 (2001)

  17. Goldenberg, C., Goldhirsch, I.: Effects of friction and disorder on the quasistatic response of granular solids to a localized force. Physical Review E 77(4), 041303 (2008)

  18. Ostojic, Srdjan, Somfai, Ellák, Nienhuis, Bernard: Scale invariance and universality of force networks in static granular matter. Nature 439(7078), 828 (2006)

    Article  ADS  Google Scholar 

  19. Kovalcinova, Lenka, Goullet, Arnaud, Kondic, Lou: Scaling properties of force networks for compressed particulate systems. Physical Review E 93(4), 042903 (2016)

  20. Kovalcinova, L., Taranto, A., Kondic, L.: Properties of interaction networks in compressed two and three dimensional particulate systems. arXiv preprintarXiv:1901.08675 (2019)

  21. Peters, J.F., Muthuswamy, M., Wibowo, J., Tordesillas, A.: Characterization of force chains in granular material. Physical review E 72(4), 041307 (2005)

  22. Snoeijer, Jacco H., Vlugt, Thijs JH., van Hecke, Martin, van Saarloos, Wim.: Force network ensemble: a new approach to static granular matter. Physical review letters, 92(5):054302 (2004)

  23. Mankoc, Cristian, Garcimartín, Angel, Zuriguel, Iker, Maza, Diego, Pugnaloni, Luis A.: Role of vibrations in the jamming and unjamming of grains discharging from a silo. Physical Review E, 80(1):011309 (2009)

  24. Lozano, Celia, Lumay, Geoffroy, Zuriguel, Iker, Hidalgo, RC., Garcimartín, Angel: Breaking arches with vibrations: the role of defects. Physical review letters, 109(6):068001 (2012)

  25. Galli, G., Grimaldi, Antonio, Leonardi, A.: Three-dimensional modeling of tunnel excavation and lining. Computers and Geotechnics, 31(3):171–183 (2004)

  26. Alsahly, Abdullah, Stascheit, Janosch, Meschke, Günther: Advanced finite element modeling of excavation and advancement processes in mechanized tunneling. Adv. Eng. Softw. 100, 198–214 (2016)

    Article  Google Scholar 

  27. Vo-Minh, T., Chau-Ngoc, A., Nguyen-Minh, T., Nguyen-Chanh, H.: A node-based smoothed finite-element method for stability analysis of dual square tunnels in cohesive-frictional soils. Scientia Iranica. Transaction A, Civil Engineering, 25(3):1105–1121 (2018)

  28. Jiang, Mingjing, Yin, Zhen-Yu.: Analysis of stress redistribution in soil and earth pressure on tunnel lining using the discrete element method. Tunnell. Underground Space Technol. 32, 251–259 (2012)

    Article  Google Scholar 

  29. Dang, Hoang K., Meguid, Mohamed A.: An efficient finite–discrete element method for quasi-static nonlinear soil–structure interaction problems. International journal for numerical and analytical methods in geomechanics, 37(2):130–149 (2013)

  30. Gravish, Nick, Garcia, Mateo, Mazouchova, Nicole, Levy, Laura, Umbanhowar, Paul B., Goodisman, Michael AD., Goldman, Daniel I.: Effects of worker size on the dynamics of fire ant tunnel construction. Journal of the Royal Society Interface, 9(77):3312–3322 (2012)

  31. Gravish, Nick, Monaenkova, Daria, Goodisman, Michael AD., Goldman, Daniel I.: Climbing, falling, and jamming during ant locomotion in confined environments. Proceedings of the National Academy of Sciences, 110(24):9746–9751 (2013)

  32. Yuliza, Elfi, Amalia, Nadya: Handika Dany Rahmayanti, Rahmawati Munir, Muhammad Miftahul Munir, Khairurrijal Khairurrijal, and Mikrajuddin Abdullah. Stability of granular tunnel. Granular Matter 20(4), 75 (2018)

    Article  Google Scholar 

  33. Espinoza, D Nicolas, Santamarina, J Carlos: Ant tunneling–a granular media perspective. Granular Matter, 12(6):607–616 (2010)

  34. Lim, Keng-Wit, Kawamoto, Reid, Andò, Edward, Viggiani, Gioacchino, Andrade, José E.: Multiscale characterization and modeling of granular materials through a computational mechanics avatar: a case study with experiment. Acta Geotechnica, 11(2):243–253 (2016)

  35. Mital, Utkarsh, Kawamoto, Reid, Andrade, José E.: Effect of fabric on shear wave velocity in granular soils. Acta Geotechnica, pages 1–15 (2019)

  36. Kawamoto, Reid, Andò, Edward, Viggiani, Gioacchino, Andrade, José E.: Level set discrete element method for three-dimensional computations with triaxial case study. Journal of the Mechanics and Physics of Solids, 91:1–13 (2016)

  37. Adriaenssens, Sigrid, Block, Philippe, Veenendaal, Diederik, Williams, Chris: Shell structures for architecture: form finding and optimization. Routledge, (2014)

  38. Lourenço, Paulo B., Milani, Gabriele, Tralli, Antonio, Zucchini, Alberto: Analysis of masonry structures: review of and recent trends in homogenization techniques. Canadian Journal of Civil Engineering, 34(11):1443–1457 (2007)

  39. Mura, Toshio: Micromechanics of defects in solids. Springer Science & Business Media (2013)

  40. Bacon, DJ., Barnett, DM., Scattergood, Ronald Otto: Anisotropic continuum theory of lattice defects. Progress in Materials Science, 23:51–262 (1980)

  41. Christoffersen, Jes, Mehrabadi, Morteza Monte, Nemat-Nasser, Sia: A micromechanical description of granular material behavior. Journal of Applied Mechanics (1981)

  42. Timoshenko, S., Goodier, J.N.: Theory of elasticity, 1951. New York 412, 108 (1951)

  43. Kirsch, C.: Die theorie der elastizitat und die bedurfnisse der festigkeitslehre. Zeitschrift des Vereines Deutscher Ingenieure 42, 797–807 (1898)

    Google Scholar 

  44. Zoback, MD., Barton, CA., Brudy, M., Castillo, DA.: Thomas Finkbeiner, BR Grollimund, DB Moos, Pl Peska, CD Ward, and DJ Wiprut. Determination of stress orientation and magnitude in deep wells. International Journal of Rock Mechanics and Mining Sciences, 40(7-8):1049–1076 (2003)

  45. Peška, Pavel, Zoback, Mark D.: Compressive and tensile failure of inclined well bores and determination of in situ stress and rock strength. Journal of Geophysical Research: Solid Earth, 100(B7):12791–12811 (1995)

  46. Cha, Minsu, Santamarina, J Carlos: Localized dissolution in sediments under stress. Granular Matter, 21(3):79 (2019)

Download references

Acknowledgements

We gratefully acknowledge financial support from the Army Research Office under grants W911NF-17-1-0212 and W911NF-19-1-0245.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José E Andrade.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, R.K., de Macedo, R.B. & Andrade, J.E. Tunnel excavation in granular media: the role of force chains. Granular Matter 23, 76 (2021). https://doi.org/10.1007/s10035-021-01141-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-021-01141-2

Navigation