Skip to main content
Log in

Densification mechanism of granular soil under dynamic compaction of proceeding impacts

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

This paper numerically studies the densification mechanism of granular soil under dynamic compaction (DC) of proceeding impacts. Two-dimensional model of material system was established by the coupled discrete element-finite difference method to reveal the dynamic responses at both macro- and microscopic levels. Firstly, normalized crater deformation simulated was compared with existing in-situ experimental data, ensuring that the ground deformation under DC has been reproduced reasonably. Then, the micro-fabric evolutions such as the local porosity, contact normal orientations and displacement paths of tracer particles were analyzed incorporating with the macro- phenomena such as soil deformation and dynamic stresses. In this way the deformation mechanism of soil is explained at the particle scale. The responses of the DEM model show that an extremely compacted soil plug forms and develops under successive impact loading. This results in obvious lateral squeezing effect that forcing the soil outside the tamper radius being compacted. The evolution of contact normal orientations and displacement paths of tracer particles further indicate that the lateral squeezing effect varies with the relative position of measured regions to the tamping point. The significant improvement area mainly lies in the range of 30 degrees intersecting with the tamping point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Menard, L., Broise, Y.: Theoretical and practical aspects of dynamic consolidation. Géotechnique 25(1), 3–18 (1975)

    Article  Google Scholar 

  2. Leonards, G.A., Cutter, W.A., Holtz, R.D.: Dynamic compaction of granular soils. J. Geotech. Eng. 106(1), 35–44 (1980)

    Google Scholar 

  3. Mayne, P.W., Jones, J.S., Dumas, J.C.: Ground response to dynamic compaction. J. Geotech. Eng. 110(6), 757–774 (1984)

    Article  Google Scholar 

  4. Poran, C.J., Rodriguez, J.A.: Design of dynamic compaction. Can. Geotech. J. 29(5), 796–802 (1992)

    Article  Google Scholar 

  5. Hwang, J.H., Tu, T.Y.: Ground vibration due to dynamic compaction. Soil Dyn. Earthq. Eng. 26(5), 337–346 (2006). https://doi.org/10.1016/j.soildyn.2005.12.004

    Article  Google Scholar 

  6. Tarawneh, B., Sbitnev, A., Hakam, Y.: Lessons learned from 11 million m2 of dynamic compaction and replacement. Ground Improv. 170(4), 208–217 (2017). https://doi.org/10.1680/jgrim.17.00025

    Article  Google Scholar 

  7. Gu, Q., Lee, F.H.: Ground response to dynamic compaction of dry sand. Géotechnique 52(7), 481–493 (2002)

    Article  Google Scholar 

  8. Lee, F.H., Gu, Q.: Method for estimating dynamic compaction effect on sand. J. Geotech. Geoenviron. Eng. 130(2), 139–152 (2004)

    Article  Google Scholar 

  9. Chow, S.H., Nazhat, Y., Airey, D.W: Applications of high speed photography in dynamic tests. In: Proceeding of the 7th International Conference on Physical Modelling in Geotechnics, Zurich, pp. 313–318 (2010)

  10. Nazhat, Y., Airey, D.: Applications of high speed photography and X-ray computerised tomography (Micro CT) in dynamic compaction tests. In: International Symposium on Deformation Characteristics of Geomaterials, Seoul Korea, pp. 421–427 (2011)

  11. Nazhat, Y., Airey, D.: The kinematics of granular soils subjected to rapid impact loading. Granul. Matter 17(1), 1–20 (2015). https://doi.org/10.1007/s10035-014-0544-y

    Article  Google Scholar 

  12. Oda, M.: Initial fabrics and their relations to mechanical properties of granular material. Soils Found. 12(1), 17–36 (1972)

    Article  Google Scholar 

  13. Hu, R.L., Yeung, M.R., Lee, C.F., Wang, S.J.: Mechanical behavior and microstructural variation of loess under dynamic compaction. Eng. Geol. 59(3), 203–217 (2001). https://doi.org/10.1016/S0013-7952(00)00074-0

    Article  Google Scholar 

  14. Hu, R.L., Yue, Z.Q., Tham, L.G., Wang, L.C.: Digital image analysis of dynamic compaction effects on clay fills. J. Geotech. Geoenviron. Eng. 131(11), 1411–1422 (2005)

    Article  Google Scholar 

  15. Fonseca, J., O’Sullivan, C., Coop, M.R., Lee, P.D.: Quantifying the evolution of soil fabric during shearing using scalar parameters. Géotechnique 63(10), 818–829 (2013). https://doi.org/10.1680/geot.11.P.150

    Article  Google Scholar 

  16. Fonseca, J., O’Sullivan, C., Coop, M.R., Lee, P.D.: Quantifying the evolution of soil fabric during shearing using directional parameters. Géotechnique 63(6), 487–499 (2013). https://doi.org/10.1680/geot.12.P.003

    Article  Google Scholar 

  17. Fonseca, J., Sim, W.W., Shire, T., O’Sullivan, C.: Microstructural analysis of sands with varying degrees of internal stability. Géotechnique 64(5), 405–411 (2014). https://doi.org/10.1680/geot.13.T.014

    Article  Google Scholar 

  18. O’Sullivan, C.: Catherine: Particle-based discrete element modeling: geomechanics perspective. Int. J. Geomech. 11(6), 449–464 (2011). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000024

    Article  Google Scholar 

  19. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 30(30), 331–336 (1979)

    Google Scholar 

  20. Thornton, C.: Numerical simulations of deviatoric shear deformation of granular media. Géotechnique 50(1), 43–53 (2000)

    Article  Google Scholar 

  21. Fakhimi, A., Riedel, J.J., Labuz, J.F.: Shear banding in sandstone: physical and numerical studies. Int. J. Geomech. 6(3), 185–194 (2006). https://doi.org/10.1061/(ASCE)1532-3641(2006)6:3(185)

    Article  Google Scholar 

  22. Gu, X., Huang, M., Qian, J.: DEM investigation on the evolution of microstructure in granular soils under shearing. Granul. Matter 16(1), 91–106 (2014). https://doi.org/10.1007/s10035-013-0467-z

    Article  Google Scholar 

  23. Jiang, M., An, Z., Chang, F.: 3-D DEM simulations of drained triaxial tests on inherently anisotropic granulates. Eur. J. Environ. Civ. Eng. 22(sup1), 37–56 (2017). https://doi.org/10.1080/19648189.2017.1385541

    Article  Google Scholar 

  24. Gu, X.Q., Hu, J., Huang, M.S., Yang, J.: Discrete element analysis of the K-0 of granular soil and its relation to small strain shear stiffness. Int. J. Geomech. 18(3), 1–5 (2018)

    Article  Google Scholar 

  25. Wada, K., Senshu, H., Matsui, T.: Numerical simulation of impact cratering on granular material. Icarus 180(2), 528–545 (2006). https://doi.org/10.1016/j.icarus.2005.10.002

    Article  ADS  Google Scholar 

  26. Ma, Z.Y., Dang, F.N., Liao, H.J.: Numerical study of the dynamic compaction of gravel soil ground using the discrete element method. Granul. Matter 16(6), 881–889 (2014). https://doi.org/10.1007/s10035-014-0529-x

    Article  Google Scholar 

  27. Jiang, M.J., Wu, D., Xi, B.L.: DEM simulation of dynamic compaction with different tamping energy and calibrated damping parameters. In: International Conference on Discrete Element Methods, Singapore, pp. 845–851 (2017)

  28. Jia, M., Liu, B., Xue, J., Ma, G.: Coupled three-dimensional discrete element–finite difference simulation of dynamic compaction. Acta Geotech. 16(3), 731–747 (2020). https://doi.org/10.1007/s11440-020-01055-y

    Article  Google Scholar 

  29. Jia, M., Yang, Y., Liu, B., Wu, S.: PFC/FLAC coupled simulation of dynamic compaction in granular soils. Granul. Matter 20(4), 76 (2018). https://doi.org/10.1007/s10035-018-0841-y

    Article  Google Scholar 

  30. Itasca Consulting Group: User’s manual of PFC2D (Particle Flow Code in 2 Dimensions), Version 4.0. Minneapolis: ICG (2005).

  31. Itasca Consulting Group: User’s manual of FLAC2D (Fast Lagrangian Analysis of Continua in 2 Dimensions), Version 5.0. Minneapolis: ICG (2005).

  32. Buckingham, E.: On physically similar systems: illustrations of the use of dimensional equations. Phys. Rev. 4(4), 345–376 (1914)

    Article  ADS  Google Scholar 

  33. Butterfield, R.: Dimensional analysis for geotechnical engineers. Géotechnique 49(3), 357–366 (1999). https://doi.org/10.1680/geot.1999.49.3.357

    Article  Google Scholar 

  34. Rollins, K.M., Kim, J.H.: Dynamic compaction of collapsible soils based on US case histories. J. Geotech. Geoenviron. Eng. 136(9), 1178–1186 (2010). https://doi.org/10.1061/(ASCE)GT.1943-5606.0000331

    Article  Google Scholar 

  35. Merrifield, C.M., Davies, M.C.R.: A study of low-energy dynamic compaction: field trials and centrifuge modelling. Géotechnique 50(6), 675–681 (2000). https://doi.org/10.1680/geot.2000.50.6.675

    Article  Google Scholar 

  36. Rothenburg, L., Bathurst, R.J.: Analytical study of induced anisotropy in idealized granular materials. Geotechnique 39(4), 601–614 (1989). https://doi.org/10.1680/geot.1989.39.4.601

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by the Natural Science Foundation of China (NSFC, Grant No. 40972214) and the China Petroleum Engineering & Construction Corp (CPECC, Grant No. KJ22) to the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, M., Yang, Y., Liu, B. et al. Densification mechanism of granular soil under dynamic compaction of proceeding impacts. Granular Matter 23, 72 (2021). https://doi.org/10.1007/s10035-021-01136-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-021-01136-z

Keywords

Navigation