Skip to main content
Log in

Effects of grain morphology on suffusion susceptibility of cohesionless soils

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Transporting finer fractions inside the soil skeleton or the erosion of base soils within the filter are the two main challenges for earthen hydraulic structures, their foundations, and filter design. Soil particle morphology could influence pore size distribution and transport of fine grains; however, there is not sufficient knowledge on the effect of grain shape on internal erosion. Some experiments designed and conducted in the present study to evaluate the suffusion potential of aggregates with various shapes and different gradations. Particles with six types of grain morphologies and five gradations were collected, and 26 tests were performed. Furthermore, using 3D image processing and visual comparison, particle shape assessed in terms of three features, including sphericity, roundness, and roughness. Results indicated that particle shape influences flow rate, washed-out fine grains in permeameter wall, vertical strain, and mass loss. An increase in the sphericity and roundness causes an increase in the loss of fine grains, pipe in cell sidewall, and vertical strain. Concerning the particle regularity as an indicator of grain morphology, it was demonstrated that the grains with lower regularity are more resistant to suffusion, and thus the resistance to suffusion would decrease with particle regularity. Spherical glass bead and rounded/ medium sphericity specimens were more prone to suffusion at an equivalent or even lower hydraulic gradient than the soil samples with angular/low sphericity grains.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

dx :

Particle size that X percent is finer than it

D:

Sieve size (mm)

Cc :

Curvature coefficient

CU :

Uniformity coefficient

\(\frac{{D_{{15}}^{'} }}{{d_{{85}}^{'} }}\) :

Filter ratio of the components

\(\frac{{D_{{15}}^{'} }}{{d_{{85}}^{'} }}\) :

Grain size corresponding to 85% finer in the finer fraction

\(D_{{15}}^{'}\) :

Grain size corresponding to 15% finer in the coarser fraction

F:

Percentage smaller than D, mass passing

H:

Mass percentage between size D and 4D, mass increment

\(G_{r}\) :

Gap ratio

P:

Portion of particles finer than 0.063 mm

d0 :

Mean pore diameter

d1 :

Minimum diameter of pores

a:

Shape coefficient, shape factor

\(d_{{min}}\) :

Minimum grain diameter

\(n\) :

Porosity

\(D_{h}\) :

Effective diameter

R:

Wadell’s roundness

S:

Inscribed-circumscribed sphere ratio

\(d_{{i - s}}\) :

Diameters of the inscribed sphere

\(d_{{c - s}}\) :

Diameters of the circumscribed sphere

ρ:

Regularity

References

  1. Foster, M., Fell, R., Spannagle, M.: The statistics of embankment dam failures and accidents. Can. Geotech. J. 37, 1000–1024 (2000). https://doi.org/10.1139/t00-030

    Article  Google Scholar 

  2. ICOLD: Internal erosion of existing dams, levees and dikes, and their foundations. Bull,.1: 342 (2015)

  3. Kenney, T.C., Lau, D.: Internal stability of granular filters. Can. Geotech. J. 22, 215–225 (1985). https://doi.org/10.1139/t86-068

    Article  Google Scholar 

  4. Shire, T., O’Sullivan, C., Hanley, K.J.: The influence of fines content and size-ratio on the micro-scale properties of dense bimodal materials. Granul. Matter. 18, (2016). https://doi.org/10.1007/s10035-016-0654-9

  5. Taha, H., Nguyen, N.-S., Marot, D., Hijazi, A., Abou-Saleh, K.: Micro-scale investigation of the role of finer grains in the behavior of bidisperse granular materials. Granul. Matter. 21, 28 (2019). https://doi.org/10.1007/s10035-019-0867-9

    Article  Google Scholar 

  6. Douglas, K.J., Fell, R., Peirson, W.L., Studholme, H.: Experimental investigation of global backward erosion and suffusion of soils in embankment dams. Can. Geotech. J. 56, 789–807 (2019). https://doi.org/10.1139/cgj-2018-0088

    Article  Google Scholar 

  7. Chapuis, R.P., Saucier, A.: Assessing internal erosion with the modal decomposition method for grain size distribution curves. Acta Geotech. 15(6), 1595–1605 (2019). https://doi.org/10.1007/s11440-019-00865-z

    Article  Google Scholar 

  8. Marot, D., Benamar, A.: Suffusion, Transport and Filtration of Fine Particles in Granular Soil. In: Bonelli, S. (ed.) Erosion of Geomaterials, pp. 39–79. John Wiley & Sons Inc, Hoboken, NJ, USA (2013)

    Chapter  Google Scholar 

  9. Fannin, R.J., Slangen, P.: On the distinct phenomena of suffusion and suffosion. Géotechnique Lett. 4, 289–294 (2014). https://doi.org/10.1680/geolett.14.00051

    Article  Google Scholar 

  10. Richards, K.S., Reddy, K.R.: Critical appraisal of piping phenomena in earth dams. Bull. Eng. Geol. Environ. 66, 381–402 (2007). https://doi.org/10.1007/s10064-007-0095-0

    Article  Google Scholar 

  11. USBR-USACE: Best practices in dam and levee safety risk analysis, Technical Report Version 4.0. , US Bureau of Reclamation and the US Army Corps of Engineers, Denver, CO, USA (2015)

  12. Hunter, R.P., Bowman, E.T.: Visualisation of seepage-induced suffusion and suffosion within internally erodible granular media. Géotechnique. 68, 918–930 (2018). https://doi.org/10.1680/jgeot.17.P.161

    Article  Google Scholar 

  13. Aboul Hosn, R., Sibille, L., Benahmed, N., Chareyre, B.: A discrete numerical model involving partial fluid-solid coupling to describe suffusion effects in soils. Comput. Geotech. 95, 30–39 (2018). https://doi.org/10.1016/j.compgeo.2017.11.006

    Article  Google Scholar 

  14. Scholtès, L., Hicher, P.-Y., Sibille, L.: Multiscale approaches to describe mechanical responses induced by particle removal in granular materials. Comptes Rendus Mécanique. 338, 627–638 (2010). https://doi.org/10.1016/j.crme.2010.10.003

    Article  MATH  ADS  Google Scholar 

  15. Aberg, B.: Void sizes in granular soils. J. Geotech. Eng. 122, 236–239 (1996). https://doi.org/10.1061/(ASCE)0733-9410(1996)122:3(236)

    Article  Google Scholar 

  16. Shire, T., O’Sullivan, C.: Micromechanical assessment of an internal stability criterion. Acta Geotech. 8, 81–90 (2013). https://doi.org/10.1007/s11440-012-0176-5

    Article  Google Scholar 

  17. Kezdi, A.: Soil Physics- Selected Topics. Elsevier, Amsterdam (1979)

    Google Scholar 

  18. Wan, C.F., Fell, R.: Assessing the Potential of Internal Instability and Suffusion in Embankment Dams and Their Foundations. J. Geotech. Geoenviron. Eng. 134, 401–407 (2008). https://doi.org/10.1061/(ASCE)1090-0241(2008)134:3(401)

    Article  Google Scholar 

  19. Salehi Sadaghiani, M.R., Witt, K.J.: Experimental identification of mobile particles in suffusible non cohesive soils. Eur. J. Environ. Civ. Eng. 15, 1155–1165 (2011). https://doi.org/10.1080/19648189.2011.9714846

    Article  Google Scholar 

  20. Seghir, A., Benamar, A., Wang, H.: Effects of fine particles on the suffusion of cohesionless soils. Exp. Model. Transp. Porous Media. 103, 233–247 (2014). https://doi.org/10.1007/s11242-014-0299-2

    Article  Google Scholar 

  21. Zhong, C., Le, V.T., Bendahmane, F., Marot, D., Yin, Z.: Investigation of spatial scale effects on suffusion susceptibility. J. Geotech. Geoenviron. Eng. 144, 04018067 (2018). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001935

    Article  Google Scholar 

  22. Chapuis, R.P.: Similarity of internal stability criteria for granular soils. Can. Geotech. J. 29, 711–713 (1992). https://doi.org/10.1139/t92-078

    Article  Google Scholar 

  23. Kovács, G.: Seepage Hydraulics., Elsevier, Amsterdam (1981)

  24. Kenney, T.C., Chahal, R., Chiu, E., Ofoegbu, G.I., Omange, G.N., Ume, C.A.: Controlling constriction sizes of granular filters. Can. Geotech. J. 22, 32–43 (1985). https://doi.org/10.1139/t85-005

    Article  Google Scholar 

  25. Aberg, B.: Washout of grains from filtered sand and gravel materials. J. Geotech. Eng. 119, 36–53 (1993). https://doi.org/10.1061/(ASCE)0733-9410(1993)119:1(36)

    Article  Google Scholar 

  26. Seblany, F., Homberg, U., Vincens, E., Winkler, P., Josef Witt, K.: Merging criteria for defining pores and constrictions in numerical packing of spheres. Granul. Matter. 20, 37 (2018). https://doi.org/10.1007/s10035-018-0808-z

    Article  Google Scholar 

  27. Maroof, M.A., Mahboubi, A., Noorzad, A.: A new method to determine specific surface area and shape coefficient of a cohesionless granular medium. Adv. Powder Technol. 31, 3038–3049 (2020). https://doi.org/10.1016/j.apt.2020.05.028

    Article  Google Scholar 

  28. Istomina, V. S.: Filtration stability of soils. In: Oostroizdat. , Moscow, Leningrad (in Russian) (1957)

  29. Kenney, T.C., Lau, D.: Internal stability of granular filters: Reply. Can. Geotech. J. 23, 420–423 (1986). https://doi.org/10.1139/t86-068

    Article  Google Scholar 

  30. Burenkova, V. V.: Assessment of the internal instability for granular soils subjected to seepage. In: 1st international conference, Filters in geotechnical and hydraulic engineering. pp. 357–360. Balkema, Karlsruhe; Germany (1993)

  31. Chang, D.S., Zhang, L.M.: Extended internal stability criteria for soils under seepage. Soils Found. 53, 569–583 (2013). https://doi.org/10.1016/j.sandf.2013.06.008

    Article  Google Scholar 

  32. Skempton, A.W., Brogan, J.M.: Experiments on piping in sandy gravels. Géotechnique. 44, 449–460 (1994). https://doi.org/10.1680/geot.1994.44.3.449

    Article  Google Scholar 

  33. Sibille, L., Marot, D., Sail, Y.: A description of internal erosion by suffusion and induced settlements on cohesionless granular matter. Acta Geotech. 10, 735–748 (2015). https://doi.org/10.1007/s11440-015-0388-6

    Article  Google Scholar 

  34. Adel, H.D., Bakker, K.J., Breteler, M.K.: Internal stability of minestone. In: International Symposium on Modelling Soil–Water- Structure Interactions. p. 225−231. , Balkema, Rotterdam (1988)

  35. Salehi, M., Witt, K., Odenwald, B.: Experimental investigations of critical hydraulic gradients for a soil prone to suffusion. In: Scour and Erosion. pp. 1033–1043. CRC Press, Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487–2742 (2016)

  36. Andrianatrehina, L., Souli, H., Rech, J., Taibi, S., Fry, J.-J., Bunieski, S., Fleureau, J.-M.: Determination of the maximum diameter of free fines to assess the internal stability of coarse granular materials. Eur. J. Environ. Civ. Eng. 21, 332–347 (2017). https://doi.org/10.1080/19648189.2015.1116468

    Article  Google Scholar 

  37. Moffat, R.: Experiment on the internal stability of widely graded cohesionless soils, (2005)

  38. Li, S., Russell, A.R., Muir Wood, D.: Influence of particle-size distribution homogeneity on shearing of soils subjected to internal erosion. Can. Geotech. J. 57, 1684–1694 (2020). https://doi.org/10.1139/cgj-2019-0273

    Article  Google Scholar 

  39. Moffat, R., Fannin, R.J., Garner, S.J.: Spatial and temporal progression of internal erosion in cohesionless soil. Can. Geotech. J. 48, 399–412 (2011). https://doi.org/10.1139/T10-071

    Article  Google Scholar 

  40. Slangen, P.: On the influence of effective stress and micro-structure on suffusion and suffosion, PhD thesis, The university of British Columbia, (2015)

  41. Li, M., Fannin, R.J.: Capillary Tube Model for Internal Stability of Cohesionless Soil. J. Geotech. Geoenviron. Eng. 139, 831–834 (2013). https://doi.org/10.1061/(ASCE)GT.1943-5606.0000790

    Article  Google Scholar 

  42. Indraratna, B., Vafai, F.: Analytical Model for Particle Migration within Base Soil-Filter System. J. Geotech. Geoenviron. Eng. 123, 100–109 (1997).

  43. Dallo, Y.A.H., Wang, Y.: Determination of controlling constriction size from capillary tube model for internal stability assessment of granular soils. Soils Found. 56, 315–320 (2016). https://doi.org/10.1016/j.sandf.2016.02.013

    Article  Google Scholar 

  44. Marot, D., Bendahmane, F., Haï Nguyen, H.: Influence of angularity of coarse fraction grains on internal erosion process. La Houille. Blanche 6, 47–53 (2012)

    Article  Google Scholar 

  45. Slangen, P., Fannin, R.J.: The role of particle type on suffusion and suffosion. Géotechnique Lett. 7, 6–10 (2017). https://doi.org/10.1680/jgele.16.00099

    Article  Google Scholar 

  46. Crawford-Flett, K.: An improved hydromechanical understanding of seepage-induced instability phenomena in soil. PhD thesis, The University of British Columbia, Vancouver, Canada (2014)

  47. Sail, Y., Marot, D., Sibille, L., Alexis, A.: Suffusion tests on cohesionless granular matter. Eur. J. Environ. Civ. Eng. 15, 799–817 (2011). https://doi.org/10.1080/19648189.2011.9693366

    Article  Google Scholar 

  48. Marot, D., Rochim, A., Nguyen, H.H., Bendahmane, F., Sibille, L.: Assessing the susceptibility of gap-graded soils to internal erosion: proposition of a new experimental methodology. Nat. Hazards. 83, 365–388 (2016). https://doi.org/10.1007/s11069-016-2319-8

    Article  Google Scholar 

  49. Le, V.T., Marot, D., Rochim, A., Bendahmane, F., Nguyen, H.H.: Suffusion susceptibility investigation by energy-based method and statistical analysis. Can. Geotech. J. 55, 57–68 (2018). https://doi.org/10.1139/cgj-2017-0024

    Article  Google Scholar 

  50. Barrett, P.J.: The shape of rock particles, a critical review. Sedmentology. 27, 291–303 (1980)

    Article  ADS  Google Scholar 

  51. Mitchell, J., Soga, K.: Fundamentals of soil behavior. Wiley, New York (2005)

    Google Scholar 

  52. Suhr, B., Six, K.: Simple particle shapes for DEM simulations of railway ballast: influence of shape descriptors on packing behaviour. Granul. Matter. 22, 43 (2020). https://doi.org/10.1007/s10035-020-1009-0

    Article  Google Scholar 

  53. Su, Y.F., Lee, S.J., Sukumaran, B.: Influence of particle morphology simplification on the simulation of granular material behavior. Granul. Matter. 22(1), 1–12 (2020)

    Article  Google Scholar 

  54. ASTM D2488–09a: Standard Practice for Description and Identification of Soils (Visual-Manual Procedure). ASTM Int. West Conshohocken, PA,. (2009). https://doi.org/10.1520/D2488-09A

  55. Maroof, M.A., Mahboubi, A., Noorzad, A., Safi, Y.: A new approach to particle shape classification of granular materials. Transp. Geotech. 22, 100296 (2020). https://doi.org/10.1016/j.trgeo.2019.100296

    Article  Google Scholar 

  56. Wadell, H.: Volume, Shape, and Roundness of Rock Particles. J. Geol. 40, 443–451 (1932). https://doi.org/10.1086/623964

    Article  ADS  Google Scholar 

  57. Powers, M.C.: A New Roundness Scale for Sedimentary Particles. SEPM J. Sediment. Res. 23, 117–119 (1953). https://doi.org/10.1306/D4269567-2B26-11D7-8648000102C1865D

    Article  Google Scholar 

  58. Nguyen, C.D., Benahmed, N., Andò, E., Sibille, L., Philippe, P.: Experimental investigation of microstructural changes in soils eroded by suffusion using X-ray tomography. Acta Geotech. 14, 749–765 (2019). https://doi.org/10.1007/s11440-019-00787-w

    Article  Google Scholar 

  59. Moffat, R., Fannin, R.: A Large Permeameter for Study of Internal Stability in Cohesionless Soils. Geotech. Test. J. 29, 273–279 (2006). https://doi.org/10.1520/GTJ100021

    Article  Google Scholar 

  60. Ke, L., Takahashi, A.: Experimental investigations on suffusion characteristics and its mechanical consequences on saturated cohesionless soil. Soils Found. 54, 713–730 (2014). https://doi.org/10.1016/j.sandf.2014.06.024

    Article  Google Scholar 

  61. Head, K.H., Epps, R.: Manual of Soil Laboratory Testing—Volume 2: Permeability. Shear Strength and Compressibility Tests, Whittles Publishing (2011)

    Google Scholar 

  62. SanthanaKrishnan, N., Neelakantan, T.R.: Analysis of susceptibility to suffusion. ARPN J. Eng. Appl. Sci. 9, 1999–2008 (2014)

    Google Scholar 

  63. Rochim, A., Marot, D., Sibille, L., Le Thao, V.: Effects of Hydraulic Loading History on Suffusion Susceptibility of Cohesionless Soils. J. Geotech. Geoenviron. Eng. 143, 04017025 (2017). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001673

    Article  Google Scholar 

  64. Luo, Y. L., Qiao, L., Liu, X. Xing, Zhan, M. li, Sheng, J. chang: Hydro-mechanical experiments on suffusion under long-term large hydraulic heads. Nat. Hazards. 65: 1361–1377 (2013)

  65. Chapuis, R.P.: Predicting the saturated hydraulic conductivity of sand and gravel using effective diameter and void ratio. Can. Geotech. J. 41, 787–795 (2004). https://doi.org/10.1139/t04-022

    Article  Google Scholar 

  66. Allen, T.: Particle Size Measurement. Springer, US, Boston, MA (1981)

    Book  Google Scholar 

  67. Van Lopik, J.H., Snoeijers, R., Van Dooren, T.C.G.W., Raoof, A., Schotting, R.J.: The effect of grain size distribution on nonlinear flow behavior in sandy porous media. Transp. Porous Media. 120, 37–66 (2017). https://doi.org/10.1007/s11242-017-0903-3

    Article  MathSciNet  Google Scholar 

  68. Witt, K.-J., Brauns, J.: Permeability-Anisotropy Due to Particle Shape. J. Geotech. Eng. 109, 1181–1187 (1983). https://doi.org/10.1061/(ASCE)0733-9410(1983)109:9(1181)

    Article  Google Scholar 

  69. Krumbein, W.C.: The effects of abrasion on the size, shape and roundness of rock fragments. J. Geol. 49, 482–520 (1941). https://doi.org/10.1086/624985

    Article  ADS  Google Scholar 

  70. Cho, G.-C., Dodds, J., Santamarina, J.C.: Particle Shape Effects on Packing Density, Stiffness, and Strength: Natural and Crushed Sands. J. Geotech. Geoenviron. Eng. 132, 591–602 (2006). https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(591)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Mahboubi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maroof, M.A., Mahboubi, A. & Noorzad, A. Effects of grain morphology on suffusion susceptibility of cohesionless soils. Granular Matter 23, 8 (2021). https://doi.org/10.1007/s10035-020-01075-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-020-01075-1

Keywords

Navigation