Skip to main content
Log in

Size scaling relation of velocity field in granular flows and the Beverloo law

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

In a hopper with cylindrical symmetry and an aperture of radius R, the vertical velocity of granular flow \(v_z\) depends on the distance from the hopper’s center r and the height above the aperture z and \(v_z = v_z (r,z;\,R)\). We propose that the scaled vertical velocity \(v_{z}(r,z;\,R)/v_{z} (0,0;\,R)\) is a function of scaled variables \(r/R_r\) and \(z/R_z\), where \(R_{ r}=R- 0.5 d\) and \(R_{ z}=R-k_2 d\) with the granule diameter d and a parameter \(k_2\) to be determined. After scaled by \(v_{ z}^2 (0,0;\,R)/R_z \), the effective acceleration \(a_{\mathrm{eff}} (r,z;\,R)\) derived from \(v_z\) is a function of \(r/R_r\) and \(z/R_z\) also. The boundary condition \(a_\mathrm{eff} (0,0;\,R)=-\,g\) of granular flows under earth gravity g gives rise to \(v_{ z} (0,0;\,R) \propto \sqrt{g}\left( R -k_2 d\right) ^{1/2}\). Our simulations using the discrete element method and GPU program in the three-dimensional and the two-dimensional hoppers confirm the size scaling relations of \(v_{ z} (r,z;\,R)\) and \(v_{ z} (0,0;\,R)\). From the size scaling relations, we obtain the mass flow rate of D-dimensional hopper \(W \propto \sqrt{g } (R-0.5 d)^{D-1} (R-k_2 d)^{1/2}\), which agrees with the Beverloo law at \(R\gg d\). It is the size scaling of vertical velocity field that results in the dimensional R-dependence of W in the Beverloo law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aguirre, M.A., Grande, J.G., Calvo, A., Pugnaloni, L.A., Géminard, J.C.: Pressure independence of granular flow through an aperture. Phys. Rev. Lett. 104(23), 238002 (2010)

    Article  ADS  Google Scholar 

  2. Aguirre, María Alejandra, Grande, Juan Gabriel, Calvo, Adriana, Pugnaloni, Luis A, Géminard, Jean-Christophe: Granular flow through an aperture: pressure and flow rate are independent. Phys. Rev. E 83(6), 061305 (2011)

    Article  ADS  Google Scholar 

  3. Beverloo, W.A., Leniger, H.A., van de Velde, J.: The flow of granular solids through orifices. Chem. Eng. Sci. 15(3), 260–269 (1961)

    Article  Google Scholar 

  4. Brilliantov, Nikolai V., Spahn, Frank, Hertzsch, Jan-Martin, Pöschel, Thorsten: Model for collisions in granular gases. Phys. Rev. E 53, 5382–5392 (1996)

    Article  ADS  Google Scholar 

  5. Brown, R.L.: Minimum energy theorem for flow of dry granules through apertures. Nature 191(4787), 458–461 (1961)

    Article  ADS  Google Scholar 

  6. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  7. De-Song, Bao, Zhang Xun-Sheng, Xu, Guang-Lei, Pan Zheng-Quan, Xiao-Wei, Tang, Kun-Quan, Lu: Critical phenomenon of granular flow on a conveyor belt. Phys. Rev. E 67, 062301 (2003)

    Article  ADS  Google Scholar 

  8. Dorbolo, S., Maquet, L., Brandenbourger, M., Ludewig, F., Lumay, G., Caps, H., Vandewalle, N., Rondia, S., Mélard, M., van Loon, J., Dowson, A., Vincent-Bonnieu, S.: Influence of the gravity on the discharge of a silo. Granul. Matter 15(3), 263–273 (2013)

    Article  Google Scholar 

  9. Fisher, Michael E., Barber, Michael N.: Scaling theory for finite-size effects in the critical region. Phys. Rev. Lett. 28(23), 8–11 (1972)

    Article  Google Scholar 

  10. Janda, Alvaro, Zuriguel, Iker, Maza, Diego: Flow rate of particles through apertures obtained from self-similar density and velocity profiles. Phys. Rev. Lett. 108(24), 248001 (2012)

    Article  ADS  Google Scholar 

  11. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Book  Google Scholar 

  12. Lin, P., Zhang, S., Qi, J., Xing, Y.M., Yang, L.: Numerical study of free-fall arches in hopper flows. Phys. A Stat. Mech. Appl. 417, 29–40 (2015)

    Article  Google Scholar 

  13. Mankoc, C., Janda, A., Arévalo, R., Pastor, J.M., Zuriguel, I., Garcimartín, A., Maza, D.: The flow rate of granular materials through an orifice. Granul. Matter 9(6), 407–414 (2007)

    Article  Google Scholar 

  14. Mankoc, Cristian, Garcimartín, Angel, Zuriguel, Iker, Maza, Diego, Pugnaloni, Luis A: Role of vibrations in the jamming and unjamming of grains discharging from a silo. Phys. Rev. E 80(1), 011309 (2009)

    Article  ADS  Google Scholar 

  15. Nedderman, R.M., Tzn, U., Savage, S.B., Houlsby, G.T.: The flow of granular materials—I. Chem. Eng. Sci. 37(11), 1597–1609 (1982)

    Article  Google Scholar 

  16. Rubio-Largo, S.M., Janda, A., Maza, D., Zuriguel, I., Hidalgo, R.C.: Disentangling the free-fall arch paradox in silo discharge. Phys. Rev. Lett. 114(23), 238002 (2015)

    Article  ADS  Google Scholar 

  17. Schwager, Thomas, Pöschel, Thorsten: Coefficient of restitution for viscoelastic spheres: the effect of delayed recovery. Phys. Rev. E 78, 051304 (2008)

    Article  ADS  Google Scholar 

  18. Tian, Y., Lin, P., Zhang, S., Wang, C.L., Wan, J.F., Yang, L.: Study on free fall surfaces in three-dimensional hopper flows. Adv. Powder Technol. 26(4), 1191–1199 (2015)

    Article  Google Scholar 

  19. Tighe, Brian P, Sperl, Matthias: Pressure and motion of dry sand: translation of Hagen’s paper from 1852. Granul. Matter 9(3–4), 141–144 (2007)

    Article  Google Scholar 

  20. Zhu, H.P., Yu, A.B.: Steady-state granular flow in a three-dimensional cylindrical hopper with flat bottom: microscopic analysis. J. Phys. D Appl. Phys. 37(10), 1497 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Magnetic Confinement Fusion Science Program of China under Grant No. 2014GB104002, the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No. XDA03030100, and the National natural Science Foundation of China under Grant No. 11421063.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaosong Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, G., Lin, P., Zhang, Y. et al. Size scaling relation of velocity field in granular flows and the Beverloo law. Granular Matter 21, 21 (2019). https://doi.org/10.1007/s10035-019-0872-z

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-019-0872-z

Keywords

Navigation