Skip to main content

Advertisement

Log in

Validation of the CFD-DPM solver DPMFoam in \(\hbox {OpenFOAM}^\circledR \) through analytical, numerical and experimental comparisons

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Multiphase flows are relevant in several industrial processes mainly because they are present in the production of a large diversity of products. Hence, the availability of accurate numerical modeling tools, able to cope with this type of flows, is of major significance to provide detailed information about the system characteristics, in order to guide the design activity. This study presents a detailed assessment of a multiphase flow solver able to couple Eulerian and Lagrangian phases, the last modeled through the discrete particle method. The numerical code is already implemented in the open source computational fluid dynamics software package \(\hbox {OpenFOAM}^\circledR \). The solver (DPMFoam) is firstly used to simulate the collision between two particles, for which a good correlation was obtained with the theoretical impulse force value. Subsequently, the solver is employed in the simulation of a pseudo 2D gas-solid flow in a fluidized bed. In this case study, the results obtained for the bubble patterns, time-average flow patterns, bed expansion dynamics and particle phase energy analysis are in agreement with the experimental and numerical results available in the literature. In addition, the numerical pressure drop for the fluidized bed is computed and compared with the analytical Ergun’s pressure drop equation. The accuracy of the numerical results was found to be sensitive to the solid fraction estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Weighardt, K.: Experiments in granular flow. Ann. Rev. Fluid Mech. 7, 89–114 (1975). https://doi.org/10.1146/annurev.fl.07.010175.000513

    Article  ADS  Google Scholar 

  2. Cundall, P.A., Strack, O.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979). https://doi.org/10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  3. O’Sullivan, C.: Particulate Discrete Element Modelling: A Geomechanics Perspective. Spon Press (an imprint of Taylor & Francis), London (2011)

    Google Scholar 

  4. Zhu, H.P., Zhou, Z.Y., Yang, R.Y., Yu, A.B.: Discrete particle simulation of particulate systems: theoretical developments. Chem. Eng. Sci. 62(13), 3378–3396 (2007). https://doi.org/10.1016/j.ces.2006.12.089

    Article  Google Scholar 

  5. Hoomans, B.P.B.: Granular dynamics of gas-solid two-phase flow. PhD thesis, University of Twente (2000)

  6. Campbell, C.S., Brennen, C.E.: Computer simulation of granular shear flows. J. Fluid Mech. 151, 167–188 (1985a). https://doi.org/10.1017/S002211208500091X

    Article  ADS  Google Scholar 

  7. Tsuji, Y., Kawaguchi, T., Tanaka, T.: Discrete particle simulation of two-dimensional fluidized bed. Powder Technol. 77(1), 79–87 (1993). https://doi.org/10.1016/0032-5910(93)85010-7

    Article  Google Scholar 

  8. Gidaspow, D., Seo, Y.C., Ettehadieh, B.: Hydrodynamics of fluidization-experimental and theoretical bubble sizes in a two-dimensional bed with a jet. Chem. Eng. Commun. 22, 253–272 (1983). https://doi.org/10.1080/00986448308940060

    Article  Google Scholar 

  9. Pfleger, D., Gomes, S., Gilbert, N., Wagner, H.G.: Hydrodynamic simulations of laboratory scale bubble columns fundamental studies of the Eulerian–Eulerian modelling approach. Chem. Eng. Sci. 54, 5091–5099 (1999). https://doi.org/10.1016/S0009-2509(99)00261-4

    Article  Google Scholar 

  10. Morel, C.: Mathematical Modeling of Disperse Two-Phase Flows. Springer International Publishing, Switzerland (2015)

    Book  Google Scholar 

  11. Jakobsen, H.A., Sannaes, B.H., Grevskott, S., Svendsen, H.F.: Modeling of vertical bubble-driven flows. Ind. Eng. Chem. Res. 36, 4052–4074 (1997). https://doi.org/10.1016/0021-9991(86)90099-9

    Article  Google Scholar 

  12. Brennen, C.E.: Fundamentals of Multiphase Flows. Cambridge University Press, California (2005)

    Book  Google Scholar 

  13. Campbell, C.S.: Granular shear flows at the elastic limit. J. Fluid Mech. 465, 261–291 (2002). https://doi.org/10.1002/9781444304275.ch6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Campbell, C.S., Brennen, C.E.: Chute flows of granular material: some computer simulation. ASME J. Appl. Mech. 52(1), 172–178 (1985b). https://doi.org/10.1115/1.3168990

    Article  ADS  Google Scholar 

  15. Hoomans, B.P.B., Kuipers, J.A.M., Briels, W.J., vanSwaaij, W.P.M.: Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: a hard-sphere approach. Chem. Eng. Sci. 51, 99–118 (1996). https://doi.org/10.1016/0009-2509(95)00271-5

    Article  Google Scholar 

  16. Walton, O.R., Braun, R.L.: Viscosity, granular-temperature, and stress calculations for shearing assemblies of inelastic, frictional disks. J. Rheol. 30, 949–980 (1986a). https://doi.org/10.1122/1.549893

    Article  ADS  Google Scholar 

  17. Walton, O.R., Braun, R.L.: Stress calculations for assemblies of inelastic spheres in uniform shear. Acta Mech. 63, 73–86 (1986b). https://doi.org/10.1007/BF01182541

    Article  Google Scholar 

  18. Zhu, H.P., Zhou, Z.Y., Yang, R.Y., Yu, A.B.: Discrete particle simulation of particulate systems: a review of major applications and findings. Chem. Eng. Sci. 63, 5728–5770 (2008). https://doi.org/10.1016/j.ces.2008.08.006

    Article  Google Scholar 

  19. OpenFOAM: The open source computational fluid dynamics toolbox (2011). www.openfoam.com

  20. Macpherson, G.B., Nordin, N., Weller, H.G.: Particle tracking in unstructured, arbitrary polyhedral meshes for use in CFD and molecular dynamics. Commun. Numer. Methods Eng. 25, 263–273 (2009). https://doi.org/10.1002/cnm.1128

    Article  MATH  Google Scholar 

  21. Su, J., Gu, Z., Xu, X.Y.: Discrete element simulation of particle flow in arbitrarily complex geometries. Chem. Eng. Sci. 66, 6069–6088 (2011). https://doi.org/10.1016/j.ces.2011.08.025

    Article  Google Scholar 

  22. Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12, 620–631 (1998). https://doi.org/10.1146/annurev.fl.07.010175.000513

    Article  ADS  Google Scholar 

  23. Deen, N.G., Van Sint Annaland, M., Van der Hoef, M.A., Kuipers, J.A.M.: Review of discrete particle modeling of fluidized beds. Chem. Eng. Sci. 62, 28–44 (2007). https://doi.org/10.1016/j.ces.2006.08.014

    Article  MATH  Google Scholar 

  24. OpenFOAM 2.3.0: Discrete particle modelling (2014). http://openfoam.org/release/2-3-0/dpm/

  25. Goldschmidt, M.: Hydrodynamic Modelling of Fluidised Bed Spray Granulation. PhD thesis, University of Twente (2001)

  26. Tsuji, Y., Tanaka, T., Ishida, T.: Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol. 71(3), 239–250 (1992). https://doi.org/10.1016/0032-5910(92)88030-L

    Article  Google Scholar 

  27. Xu, B.H., Yu, A.B.: Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics. Chem. Eng. Sci. 52, 2785–2809 (1997). https://doi.org/10.1016/S0009-2509(97)00081-X

    Article  Google Scholar 

  28. Kafui, K.D., Thornton, C., Adams, M.J.: Discrete particle-continuum fluid modelling of gas-solid fluidised beds. Chem. Eng. Sci. 57(13), 2395–2410 (2002). https://doi.org/10.1016/S0009-2509(02)00140-9

    Article  Google Scholar 

  29. Shäfer, J., Dippel, S., Wolf, D.E.: Force schemes in simulation of granular material. J. de Phys. I France 6(1), 5–20 (1996). https://doi.org/10.1051/jp1:1996129

    Article  Google Scholar 

  30. Hertz, H.: Über die berührung fester elastischer körper (on the contact of elastic solids.). J. Reine und Angew. Math. 92, 156–171 (1882)

    MATH  Google Scholar 

  31. Xiong, Y.Q., Zhang, M.Y., Yuan, Z.L.: Three-dimensional numerical simulation method for gas-solid injector. Powder Technol. 160(3), 180–189 (2005). https://doi.org/10.1016/j.powtec.2005.08.029

    Article  Google Scholar 

  32. Ergun, S., Orning, A.: Fluid flow through randomly packed columns and fluidized beds. Ind. Eng. Chem. 41(6), 1179–1184 (1949). https://doi.org/10.1021/ie50474a011

    Article  Google Scholar 

  33. Wen, C., Yu, Y.: Mechanics of fluidization. In: Chemical Engineering Process Symposium, pp. 100–111 (1966)

  34. Bird, R.B., Stewart, W.E., Lightfood, E.N.: Transport Phenomena. Wiley, New York (1960)

    Google Scholar 

  35. Ferziger, J.H., Peric, M.: Computational Methods for Fluid Dynamics. Springer, Berlin (2001)

    MATH  Google Scholar 

  36. Issa, R.I.: Solution of the implicitly discretized fluid flow equations by operator-splitting. J. Comput. Phys. 62, 40–65 (1986). https://doi.org/10.1016/0021-9991(86)90099-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Gorham, D.A., Kharaz, A.H.: Results of particle impact tests. Technical report, Impact Research Group IRG 13, The Open University, Milton Keynes, UK (1999)

  38. Rhodes, M.: Introduction to Particle Technology. Wiley, New York (2008)

    Book  Google Scholar 

Download references

Acknowledgements

This work is funded by FEDER funds through the COMPETE 2020 Programme and National Funds through FCT Portuguese Foundation for Science and Technology under the project EXPL/CTM-POL/1299/2013. In addition, the authors would like to acknowledge the Minho University cluster under the project Search-ON2: Revitalization of HPC infractructure of Minho, (NORTE-07-0162-FEDER-000086), co-funded by the North Portugal Regional Operational Programme (ON.2-0 Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Fernandes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, C., Semyonov, D., Ferrás, L.L. et al. Validation of the CFD-DPM solver DPMFoam in \(\hbox {OpenFOAM}^\circledR \) through analytical, numerical and experimental comparisons. Granular Matter 20, 64 (2018). https://doi.org/10.1007/s10035-018-0834-x

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-018-0834-x

Keywords

Navigation