Skip to main content
Log in

Effect of sand and clay fouling on the shear strength of railway ballast for different ballast gradations

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Ballast contamination by fine materials such as sand and clay in railway track at arid regions is an important issue that causes track instability problems and settlement due to reduction of shear strength of ballast. In this paper, the results of direct shear box test conducted on clean ballast, sand-fouled ballast and clay-fouled ballast for different ballast gradations are reported and discussed. For this purpose, three different fouling amounts according to fouling index are added to clean ballast. Test results show that by increasing the fouling percentage, the ballast shear strength always decreases both for sand and clay fouled ballast. However, the amount of shear strength reduction is low at high normal stresses. Clay contamination has more adverse effect on the shear strength of ballast compared with sand contamination. Also, the results of tests for evaluation of gradation effect on shear strength of fouled ballast which are conducted on various gradations according to American Railway Engineering and Maintenance-of-Way Association, show that the maximum particle size as well as uniformity coefficient affect the shear strength of ballast. Also, an empirical equation is presented to observe the effect of ballast gradation on reduction of shear strength with regard to amount of fouling material and normal stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Selig, E.T., Waters, J.M.: Track Geotechnology and Substructure Management. Thomas Telford Services, London (1994)

    Book  Google Scholar 

  2. Ovalle, C., Frossard, E., Dano, C., Hu, W., Maiolino, S., Hicher, P.Y.: The effect of size on the strength of coarse rock aggregates and large rockfill samples through experimental data. Acta Mech. 225(8), 2199–2216 (2014)

    Article  MATH  Google Scholar 

  3. Guo, P., Su, X.: Shear strength, interparticle locking, and dilatancy of granular materials. Can. Geotech. J. 44(5), 579–591 (2007)

    Article  Google Scholar 

  4. Alshibli, K.A., Sture, S.: Shear band formation in plane strain experiments of sand. J. Geotech. Geoenviron. Eng. 126(6), 495–503 (2000)

    Article  Google Scholar 

  5. Mair, K., Frye, K.M., Marone, C.: Influence of grain characteristics on the friction of granular shear zones. J. Geophys. Res. Solid Earth 107(B10), 2219 (2002)

    Article  ADS  Google Scholar 

  6. Dai, B.B., Yang, J., Zhou, C.Y.: Observed effects of interparticle friction and particle size on shear behavior of granular materials. Int. J. Geomech. 16(1), 04015011 (2015)

    Article  Google Scholar 

  7. Marsal, R.J.: Large-scale testing of rockfill materials. J. Soil Mech. Found. Div. 93(2), 27–43 (1967)

    Google Scholar 

  8. Marschi, N.D., Chan, C.K., Seed, H.B.: Evaluation of properties of rockfill materials. J. Soil Mech. Found. Div. 98(1), 95–114 (1972)

    Google Scholar 

  9. Charles, J.A., Watts, K.S.: The influence of confining pressure on the shear strength of compacted rockfill. Geotechnique 30(4), 353–367 (1980)

    Article  Google Scholar 

  10. Kokusho, T., Hara, T., Hiraoka, R.: Undrained shear strength of granular soils with different particle gradations. J. Geotech. Geoenviron. Eng. 130(6), 621–629 (2004)

    Article  Google Scholar 

  11. Hamidi, A., Azini, E., Masoudi, B.: Impact of gradation on the shear strength-dilation behavior of well graded sand–gravel mixtures. Sci. Iran. 19(3), 393–402 (2012)

    Article  Google Scholar 

  12. Richefeu, V., Youssoufi, M.S., Radjai, F.: Shear strength properties of wet granular materials. Phys. Rev. E 73(5), 051304 (2006)

    Article  ADS  Google Scholar 

  13. Trinh, V.N., Tang, A.M., Cui, Y.J., Dupla, J.C., Canou, J., Calon, N., Lambert, L., Robinet, A., Schoen, O.: Mechanical characterisation of the fouled ballast in ancient railway track substructure by large-scale triaxial tests. Soils Found. 52(3), 511–523 (2012)

    Article  Google Scholar 

  14. Ebrahimi, A., Tinjum, J.M., Edil, T.B.: Large-scale cyclic triaxial testing of rail ballast. In: Proceedings of the AREMA Annual Conference, Orlando, Florida (2010)

  15. Qian, Y., Mishra, D., Tutumluer, E., Kazmee, H.A.: Characterization of geogrid reinforced ballast behavior at different levels of degradation through triaxial shear strength test and discrete element modeling. Geotext. Geomembr. 43(5), 393–402 (2015)

    Article  Google Scholar 

  16. Han, X., Selig, E.T.: Effects of fouling on ballast settlement. In: Proceeding of 6th International Heavy Haul Railway Conference, Cape Town. South Africa (1997)

  17. Salim, M.W.: Deformation and degradation aspects of ballast and constitutive modeling under cyclic loading. Thesis (Ph.D.). University of Wollongong (2004)

  18. Shi, X.: Prediction of permanent deformation in railway track. Thesis (Ph.D.), University of Nottingham (2009)

  19. Tutumluer, E., Dombrow, W., Huang, H.: Laboratory characterization of coal dust fouled ballast. In: AREMA 2008 Annual Conference and Exhibition, Salt Lake City, UT (2008)

  20. Nimbalkar, S.S., Indraratna, B., Rujikiatkamjorn, C., Martin, M.: Effect of coal fines on the shear strength and deformation characteristics of ballast. In: Proceeding of 11th Australia–New Zealand Conference on Geomechanics, Melbourne, Australia (2012)

  21. Huang, H., Tutumluer, E., Dombrow, W.: Laboratory characterization of fouled railway ballast behavior. Transp. Res. Rec. J. Transp. Res. Board 2117, 93–101 (2009)

    Article  Google Scholar 

  22. Tennakoon, N., Indraratna, B., Rujikiatkamjorn, C.: Effect of ballast contamination on the behavior of track substructure. Aust. Geomech. J. 49, 113–123 (2014)

    Google Scholar 

  23. Qian, Y., Tutumluer, E., Hashash, Y.M., Ghaboussi, J.: Effects of ballast degradation on permanent deformation behavior from large-scale triaxial tests. In: Proceeding of the 2014 Joint Rail Conference, Colorado Springs, USA (2014)

  24. Danesh, A., Palassi, M., Mirghasemi, A.A.: Evaluating the influence of ballast degradation on its shear behaviour. Int. J. Rail. Transp. 1, 1–18 (2017). https://doi.org/10.1080/23248378.2017.1411212

    Google Scholar 

  25. Babic, B., Prager, A., Rukavina, T.: Effect of fine particles on some characteristics of granular base courses. Mater. Struct. 33(7), 419–424 (2000)

    Article  Google Scholar 

  26. Vallejo, L.E.: Interpretation of the limits in shear strength in binary granular mixtures. Can. Geotech. J. 38, 1097–1104 (2001)

    Article  Google Scholar 

  27. Salgado, R., Bandini, P., Karim, A.: Shear strength and stiffness of silty sand. J. Geotech. Geoenviron. Eng. 126(5), 451–462 (2000)

    Article  Google Scholar 

  28. Georgiannou, V.N., Burland, J.B., Hight, D.W.: The undrained behaviour of clayey sands in triaxial compression and extension. Geotechnique 40(3), 431–449 (1990)

    Article  Google Scholar 

  29. Kumar, G.V., Wood, M.D.: Fall cone and compression tests on clay–gravel mixtures. Geotechnique 49(6), 727–739 (1999)

    Article  Google Scholar 

  30. Vallejo, L.E., Mawby, R.: Porosity influence on the shear strength of granular material–clay mixtures. Eng. Geol. 58, 125–136 (2000)

    Article  Google Scholar 

  31. Kim, D., Sagong, M., Lee, Y.: Effects of fine aggregate content on the mechanical properties of the compacted decomposed granitic soils. Constr. Build. Mater. 19(3), 189–196 (2005)

    Article  Google Scholar 

  32. Tutumluer, E., Huang, H., Hashash, Y.M.A., Ghaboussi, J.: Laboratory characterization of coal dust fouled ballast behaviour. In: Proceedings of the AREMA Annual Conference, UT, Salt Lake City (2008)

  33. Indraratna, B., Lackenby, J., Christie, D.: Effect of confining pressure on the degradation of ballast under cyclic loading. Geotechnique 55(4), 325–328 (2005)

    Article  Google Scholar 

  34. Koohmishi, M., Palassi, M.: Effect of particle size distribution and subgrade condition on degradation of railway ballast under impact loads. Granul. Matter 19(3), 63 (2017)

    Article  Google Scholar 

  35. Nålsund, R.: Effect of grading on degradation of crushed-rock railway ballast and on permanent axial deformation. Transp. Res. Rec. J. Transp. Res. Board 2154, 149–155 (2010)

    Article  Google Scholar 

  36. Indraratna, B., Sun, Y., Nimbalkar, S.: Laboratory assessment of the role of particle size distribution on the deformation and degradation of ballast under cyclic loading. J. Geotech. Geoenviron. Eng. 142(7), 04016016 (2016)

    Article  Google Scholar 

  37. Dombrow, D., Huang, H., Tutumluer, E.: Comparison of coal dust fouled railroad ballast behavior—granite vs. limestone. In: Tutumluer, A.-Q. (ed.) Bearing Capacity of Roads, Railways and Airfields, pp. 1349–1357. Taylor and Francis Group, Milton Park (2009)

    Google Scholar 

  38. Arslan, H., Baykal, G., Sture, S.: Analysis of the influence of crushing on the behavior of granular materials under shear. Granul. Matter 11(2), 87–97 (2009)

    Article  Google Scholar 

  39. Arulrajah, A., Rahman, M.A., Piratheepan, J., Bo, M.W., Imteaz, M.A.: Evaluation of interface shear strength properties of geogrid-reinforced construction and demolition materials using a modified large scale direct shear testing apparatus. J. Mater. Civil. Eng. 26(5), 974–982 (2013)

    Article  Google Scholar 

  40. Biabani, M.M., Indraratna, B.: An evaluation of the interface behaviour of rail subballast stabilised with geogrids and geomembranes. Geotext. Geomembr. 43(3), 240–249 (2015)

    Article  Google Scholar 

  41. Norbury, D., Hencher, S., Cripps, J., Lumsden, A.: The description and classification of weathered rocks for engineering purposes. Q. J. Eng. Geol. 28, 207–242 (1995)

    Article  Google Scholar 

  42. Stahl, M., Konietzky, H.: Discrete element simulation of ballast and gravel under special consideration of grain-shape, grain-size and relative density. Granul. Matter 13(4), 417–428 (2011)

    Article  Google Scholar 

  43. Mishra, D., Mahmud, S.N.: Effect of particle size and shape characteristics on ballast shear strength, a numerical study using the direct shear test. In: Proceeding of the 2017 Joint Rail Conference, Philadelphia, USA (2017)

  44. Wang, P., Liu, J., Tian, Z., Li, X.: Experimental study on mechanical and degradation characteristics of crushed rock aggregate. Transp. Res. Rec. J. Transp. Res. Board 2578, 38–46 (2016)

    Article  Google Scholar 

  45. Liu, J., Wang, P., Liu, J.: Macro-and micro-mechanical characteristics of crushed rock aggregate subjected to direct shearing. Transp. Geotech. 2, 10–19 (2015)

    Article  Google Scholar 

  46. Ngo, N.T., Indraratna, B., Rujikiatkamjorn, C.: DEM simulation of the behaviour of geogrid stabilised ballast fouled with coal. Comput. Geotech. 55, 224–231 (2014)

    Article  Google Scholar 

  47. Dash, S.K., Shivadas, A.S.: Performance improvement of railway ballast using geocells. Indian Geotech. J. 42(3), 186–193 (2012)

    Article  Google Scholar 

  48. Wang, Z., Jing, G., Yu, Q., Yin, H.: Analysis of ballast direct shear tests by discrete element method under different normal stress. Measurement 63, 17–24 (2015)

    Article  Google Scholar 

  49. Bagherzadeh-Khalkhali, A., Mirghasemi, A.A.: Numerical and experimental direct shear tests for coarse-grained soils. Particuology 7(1), 83–91 (2009)

    Article  Google Scholar 

  50. Yan, W.M., Dong, J.: Effect of particle grading on the response of an idealized granular assemblage. Int. J. Geomech. 11(4), 276–285 (2011)

    Article  Google Scholar 

  51. Esmaeili, M., Zakeri, J.A., Mosayebi, S.A.: Effect of sand-fouled ballast on train-induced vibration. Int. J. Pavement Eng. 15(7), 635–644 (2014)

    Article  Google Scholar 

  52. Indraratna, B., Ngo, N.T., Rujikiatkamjorn, C.: Behavior of geogrid-reinforced ballast under various level of fouling. Geotext. Geomembr. 29(3), 313–322 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massoud Palassi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danesh, A., Palassi, M. & Mirghasemi, A.A. Effect of sand and clay fouling on the shear strength of railway ballast for different ballast gradations. Granular Matter 20, 51 (2018). https://doi.org/10.1007/s10035-018-0824-z

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-018-0824-z

Keywords

Navigation