Skip to main content

Advertisement

Log in

Kinetic energy and collapse of granular materials

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

This paper attempts to elucidate the mechanism of failure in rate-independent granular materials using the discrete element method. For this purpose, the dynamic response of dense and loose specimens has been simulated over drained and undrained loading paths. Then, this paper revisits the relation between the occurrence of an outburst in kinetic energy with the second-order works evolution. It is shown that the prediction of the evolution of the specimen’s kinetic energy over time, according to the second-order work approach, is satisfactorily verified by the discrete numerical simulations. In particular, the conflict between external and internal second-order works is shown to play a basic role during the failure process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. André, D., Iordanoff, I., Charles, J.-L., Néauport, J.: Discrete element method to simulate continuous material by using the cohesive beam model. Comput. Methods Appl. Mech. Eng. 213, 113–125 (2012)

    Article  ADS  MATH  Google Scholar 

  2. Bigoni, D.: Bifurcation and Instability of Non-associative Elastoplastic Solids. Springer, Vienna (2000)

    Book  MATH  Google Scholar 

  3. Bigoni, D., Hueckel, T.: Uniqueness and localization-I. Associative and non-associative elastoplasticity. Int. J. Solids Struct. 28(2), 197–213 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Calvetti, F., Viggiani, G., Tamagnini, C.: A numerical investigation of the incremental behavior of granular soils. Riv. Ital. Geotec. 37(3), 11–29 (2003)

    Google Scholar 

  5. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29, 47–65 (1979). (18)

    Article  Google Scholar 

  6. Darve, F., Servant, G., Laouafa, F., Khoa, H.: Failure in geomaterials: continuous and discrete analyses. Comput. Methods Appl. Mech. Eng. 193(27–29), 3057–3085 (2004)

    Article  ADS  MATH  Google Scholar 

  7. Hill, R.: A general theory of uniqueness and stability in elastic–plastic solids. J. Mech. Phys. Solids 6(3), 236–249 (1958)

    Article  ADS  MATH  Google Scholar 

  8. Iordache, M.-M., Willam, K.: Localized failure analysis in elastoplastic Cosserat continua. Comput. Methods Appl. Mech. Eng. 151(3), 559–586 (1998)

    Article  ADS  MATH  Google Scholar 

  9. Kozicki, J., Donzé, F.: A new open-source software developed for numerical simulations using discrete modeling methods. Comput. Methods Appl. Mech. Eng. 197(49–50), 4429–4443 (2008)

    Article  ADS  MATH  Google Scholar 

  10. Leclerc, W., Ferguen, N., Pélegris, C., Bellenger, E., Guessasma, M., Haddad, H.: An efficient numerical model for investigating the effects of anisotropy on the effective thermal conductivity of alumina/Al composites. Adv. Eng. Softw. 77, 1–12 (2014)

    Article  Google Scholar 

  11. Mandel, J.: Cours de Mécanique des Milieux Continus. Gauthier-Villars, Paris (1966)

    MATH  Google Scholar 

  12. Neilsen, M., Schreyer, H.: Bifurcations in elastic–plastic materials. Int. J. Solids Struct. 30(4), 521–544 (1993)

    Article  MATH  Google Scholar 

  13. Nicot, F., Darve, F.: A micro-mechanical investigation of bifurcation in granular materials. Int. J. Solids Struct. 44(20), 6630–6652 (2007)

    Article  MATH  Google Scholar 

  14. Nicot, F., Darve, F., Dat Vu Khoa, H.: Bifurcation and second-order work in geomaterials. Int. J. Numer. Anal. Methods Geomech. 31(8), 1007–1032 (2007)

    Article  MATH  Google Scholar 

  15. Nicot, F., Sibille, L., Darve, F.: Bifurcation in granular materials: an attempt for a unified framework. Int. J. Solids Struct. 46(22), 3938–3947 (2009)

    Article  MATH  Google Scholar 

  16. Nicot, F., Sibille, L., Darve, F.: Failure in rate-independent granular materials as a bifurcation toward a dynamic regime. Int. J. Plast. 29, 136–154 (2012)

    Article  Google Scholar 

  17. Petryk, H.: Theory of Bifurcation and Instability in Time-Independent Plasticity. Springer, Vienna (1993)

    Book  MATH  Google Scholar 

  18. Plassiard, J.-P., Belheine, N., Donzé, F.-V.: A spherical discrete element model: calibration procedure and incremental response. Granul. Matter 11(5), 293–306 (2009)

    Article  MATH  Google Scholar 

  19. Prunier, F., Laouafa, F., Darve, F.: 3d bifurcation analysis in geomaterials: investigation of the second order work criterion. Eur. J. Environ. Civ. Eng. 13(2), 135–147 (2009a)

    Article  MATH  Google Scholar 

  20. Prunier, F., Nicot, F., Darve, F., Laouafa, F., Lignon, S.: Three-dimensional multiscale bifurcation analysis of granular media. J. Eng. Mech. 135(6), 493–509 (2009b)

    Article  Google Scholar 

  21. Royis, P., Doanh, T.: Theoretical analysis of strain response envelopes using incrementally non-linear constitutive equations. Int. J. Numer. Anal. Methods Geomech. 22(2), 97–132 (1998)

    Article  MATH  Google Scholar 

  22. Rudnicki, J.W., Rice, J.: Conditions for the localization of deformation in pressure-sensitive dilatant materials. J. Mech. Phys. Solids 23(6), 371–394 (1975)

  23. Sibille, L., Nicot, F., Donzé, F.-V., Darve, F.: Analysis of failure occurrence from direct simulations. Eur. J. Environ. Civ. Eng. 13(2), 187–201 (2009)

    Article  Google Scholar 

  24. Sibille, L., Nicot, F., Donzé, F., Darve, F.: Material instability in granular assemblies from fundamentally different models. Int. J. Numer. Anal. Methods Geomech. 31(3), 457–481 (2007)

    Article  MATH  Google Scholar 

  25. Šmilauer, V., Catalano, E., Chareyre, B., Dorofeenko, S., Duriez, J., Gladky, A., Kozicki, J., Modenese, C., Scholtès, L., Sibille, L., Stránský, J., Thoeni, K.: Yade reference documentation. In: Šmilauer (ed.) Yade Documentation. The Yade Project, 1st edn. (2010). http://yade-dem.org/doc/

  26. Valanis, K.: Banding and stability in plastic materials. Acta Mech. 79(1–2), 113–141 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Nicot.

Appendix: Calibration of the numerical specimen

Appendix: Calibration of the numerical specimen

The numerical YADE model is calibrated based on the experimental work of Royis and Doanh [21] and compared with the simulation of Calvetti et al. [4]. The procedure of the calibration is summarized below:

  • Because of the limitation of the numerical tool, the same grain size distribution as Hostun sand in the experimental study was not reproduced. The grain sizes are randomly generated and the void ratio \(e=0.65\) was selected.

  • Then, the parameters \(k_t, k_n, \varphi _c\) are modified to match the numerical results as close as possible to the experimental data.

The parameters of the discrete model are shown in Table 2, and these parameters are compared with those used by Calvetti et al. [4]. Figure 18 shows the comparison of the deviatoric stress q and the volumetric strain \(\varepsilon _v\) over a the drained triaxial test between experimental results [21] and two numerical models.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.N.G., Prunier, F., Djeran-Maigre, I. et al. Kinetic energy and collapse of granular materials. Granular Matter 18, 5 (2016). https://doi.org/10.1007/s10035-016-0609-1

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-016-0609-1

Keywords

Navigation