Skip to main content

Advertisement

Log in

Response of Boreal Plant Communities and Forest Floor Carbon Fluxes to Experimental Nutrient Additions

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

High-latitude warming is increasing soil temperatures and driving permafrost thaw, potentially altering soil nutrient conditions by enhancing microbial mineralization and making nutrients from previously frozen soils accessible for plant and microbial use. Increases in soil nutrient concentrations may alter plant community processes and, consequently, carbon (C) fluxes. We conducted an experiment in a boreal permafrost peatland, monitoring forest floor C flux and functional traits of the entire moss and vascular plant communities to the addition of nutrients at 20 and 40 cm soil depths and under closed and open canopy conditions. Plant functional trait responses were investigated at both community level (using community-weighted means) and intraspecific scales. Using fertilizer additions, we emulated nutrient increases at different depths in the soil profile, replicated at high and low canopy cover sites to assess the influence of light availability. Our results demonstrate rapid responses of vascular plant community-level traits as well as ecosystem respiration and gross primary productivity to fertilization treatments under low canopy cover, suggesting an influence of local environmental variation. We found that moss community-level traits played a more important role in mediating C flux response to nutrient fertilization than vascular plants but led to little change in C sink–source dynamics. This provides insight into existing ambiguities of the response of boreal C fluxes to increased nutrient availability following soil warming and permafrost thaw: Local environmental conditions and moss community can strongly mediate the response, whereas vascular plant communities may play a more minor role. However, our results suggest that these changes may not alter overall C sink–source dynamics of peatlands in the near term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data availability

Data are available at https://doi.org/10.5683/SP3/PVBG2S.

References

  • Allison SD, Czimczik CI, Treseder KK. 2008. Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest. Glob Change Biol 14:1156.

    Article  Google Scholar 

  • Allison SD, Gartner TB, Mack MC, McGuire K, Treseder KK. 2010. Nitrogen alters carbon dynamics during early succession in boreal forest. Soil Biol Biochem 42:1157.

    Article  CAS  Google Scholar 

  • Baltzer JL, Sonnentag O. 2020. No beating around the bush: the impact of projected high-latitude vegetation transitions on soil and ecosystem respiration. New Phytol 227:1591.

    Article  PubMed  Google Scholar 

  • Baltzer JL, Veness T, Chasmer LE, Sniderhan AE, Quinton WL. 2014. Forests on thawing permafrost: fragmentation, edge effects, and net forest loss. Glob Change Biol 20(3):824.

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. J Stat Soft 67:1. https://doi.org/10.18637/jss.v067.i01.

    Article  Google Scholar 

  • Bisbee KE, Gower ST, Norman JM, Nordheim EV. 2001. Environmental controls on ground cover species composition and productivity in a boreal black spruce forest. Oecologia 129:261.

    Article  PubMed  Google Scholar 

  • Biskaborn BK, Smith SL, Noetzli J, Matthes H, Vieira G, Streletskiy DA, Schoeneich P, Romanovsky VE, Lewkowicz AG, Abramov A, Lantuit H. 2019. Permafrost is warming at a global scale. Nat Commun 10:264.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bjorkman AD, Myers-Smith IH, Elmendorf SC, Normand S, Rüger N, Beck PSA, Blach-Overgaard A, Blok D, Cornelissen JH, Forbes BC, Weiher E. 2018. Plant functional trait change across a warming tundra biome. Nature 562:57.

    Article  CAS  PubMed  Google Scholar 

  • Bodelier PL, Laanbroek HJ. 2004. Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiol Ecol. 47:265.

    Article  CAS  PubMed  Google Scholar 

  • Bonan GB, Shugart HH. 1989. Environmental factors and ecological processes in boreal forests. Ann Rev Ecol Syst 20:1.

    Article  Google Scholar 

  • Bubier JL, Moore TR, Bledzki LA. 2007. Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog. Global Change Biol 13:1168.

    Article  Google Scholar 

  • Bubier JL, Smith R, Juutinen S, Moore TR, Minocha R, Long S, Minocha S. 2011. Effects of nutrient addition on leaf chemistry, morphology, and photosynthetic capacity of three bog shrubs. Oecologia 167:355.

    Article  PubMed  Google Scholar 

  • Canham CD, Berkowitz AR, Kelly VR, Lovett GM, Ollinger SV, Schnurr J. 1996. Biomass allocation and multiple resource limitation in tree seedlings. Can J Forest Res 26:1521.

    Article  Google Scholar 

  • Chapin FS, Shaver GR. 1985. Individualistic growth response of tundra plant species to environmental manipulations in the field. Ecology 66:564.

    Article  Google Scholar 

  • Chapin FS, Bloom AJ, Field CB, Waring RH. 1987. Plant responses to multiple environmental factors. Bioscience 37:49.

    Article  Google Scholar 

  • Chapin FS, Shaver GR, Giblin AE, Nadelhoffer KJ, Laundre JA. 1995. Responses of arctic tundra to experimental and observed changes in climate. Ecology 76:694.

    Article  Google Scholar 

  • Chen X, Diao H, Wang S, Li H, Wang Z, Shen Y, Degen AA, Dong K, Wang C. 2023. Plant community mediated methane uptake in response to increasing nitrogen addition level in a saline-alkaline grassland by rhizospheric effects. Geoderma 429:116235.

    Article  CAS  Google Scholar 

  • Colpaert JV, Van Laere A, Van Assche JA. 1996. Carbon and nitrogen allocation in ectomycorrhizal and non-mycorrhizal Pinus sylvestris L. seedlings. Tree Physiol 16:787.

    Article  CAS  PubMed  Google Scholar 

  • Daebeler A, Bodelier PL, Yan Z, Hefting MM, Jia Z, Laanbroek HJ. 2014. Interactions between Thaumarchaea, Nitrospira and methanotrophs modulate autotrophic nitrification in volcanic grassland soil. ISME J. 8:2397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douma JC, Van Wijk MT, Lang SI, Shaver GR. 2007. The contribution of mosses to the carbon and water exchange of arctic ecosystems: quantification and relationships with system properties. Plant, Cell Environ 30:1205.

    Article  CAS  PubMed  Google Scholar 

  • Eckstein RL. 2000. Nitrogen retention by Hylocomium splendens in a subarctic birth woodland. J Ecol 88:506.

    Article  CAS  Google Scholar 

  • Environment and climate change Canada. n.d. Canadian climate normals. Available at: https://climate.weather.gc.ca/climate_normals/. Last accessed 29 May 2019.

  • Finger RA, Turetsky MR, Kielland K, Ruess RW, Mack MC, Euskirchen ES. 2016. Effects of permafrost thaw on nitrogen availability and plant-soil interactions in a boreal Alaskan lowland. J Ecol 104:1542.

    Article  Google Scholar 

  • Garnier E, Cortez J, Billès G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint J-P. 2004. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85:2630.

    Article  Google Scholar 

  • Garon-Labrecque MÈ, Léveillé-Bourret É, Higgins K, Sonnentag O. 2015. Additions to the boreal flora of the Northwest Territories with a preliminary vascular flora of Scotty creek. Can Field-Nat 129:349.

    Article  Google Scholar 

  • Gavazov K, Albrecht R, Buttler A, Dorrepaal E, Garnett MH, Gogo S, Hagedorn F, Mills RT, Robroek BJ, Bragazza L. 2018. Vascular plant-mediated controls on atmospheric carbon assimilation and peat carbon decomposition under climate change. Glob Change Biol 24:3911.

    Article  Google Scholar 

  • Goulden ML, Crill PM. 1997. Automated measurements of CO2 exchange at the moss surface of a black spruce forest. Tree Physiol 17:537.

    Article  CAS  PubMed  Google Scholar 

  • Granath G, Strengbom J, Rydin H. 2012. Direct physiological effects of nitrogen on Sphagnum: a greenhouse experiment. Funct Ecol 26:353.

    Article  Google Scholar 

  • Harden JW, Neill KPO, Trumbore SE, Veldhuis H, Stocks BJ. 1997. Moss and soil contributions to the annual net carbon flux of a maturing boreal forest. J Geophys Res 102:28805.

    Article  CAS  Google Scholar 

  • Haugwitz MS, Michelsen A. 2011. Long-term addition of fertilizer, labile carbon, and fungicide alters the biomass of plant functional groups in a subarctic-alpine community. Plant Ecol 212:715.

    Article  Google Scholar 

  • Hewitt RE, Taylor DL, Genet H, McGuire AD, Mack MC. 2019. Below-ground plant traits influence tundra plant acquisition of newly thawed permafrost nitrogen. J Ecol 107:950.

    Article  CAS  Google Scholar 

  • Hobbie SE, Chapin FS. 1998. The response of tundra plant biomass, aboveground production, nitrogen, and CO2 flux to experimental warming. Ecology 79:1526.

    Google Scholar 

  • Hollister RD, Elphinstone C, Henry GHR, Bjorkman AD, Klanderud K, Björk RG, Björkman MP, Bokhorst S, Carbognani M, Cooper EJ, Dorrepaal E, Elmendorf SC, Fetcher N, Gallois EC, Guðmundsson J, Healey NC, Jónsdóttir IS, Klarenberg IJ, Oberbauer SF, Macek P, May JL, Mereghetti A, Molau Petraglia A, Rinnan R, Rixen C, Wookey PA. 2023. A review of open top chamber (OTC) performance across the ITEX Network. Arctic Sci 9:331.

    Article  Google Scholar 

  • Hothorn T, Bretz F, Westfall P. 2008. Simultaneous inference in general parametric model. Biom J 50:346.

    Article  PubMed  Google Scholar 

  • Hugelius G, Loisel J, Chadburn S, Jackson RB, Jones M, MacDonald G, Marushchak M, Olefeldt D, Packalen M, Siewert MB, Treat C. 2020. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc Natl Acad Sci 117:20438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IPCC. (2018). Global Warming of 1.5°C. An IPCC Special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T, editors.

  • Johnsen KH. 1993. Growth and ecophysiological responses of black spruce seedlings to elevated CO2 under varied water and nutrient additions. Can J Forest Res 23:1033.

    Article  CAS  Google Scholar 

  • Juutinen S, Bubier JL, Moore TR. 2010. Responses of vegetation and ecosystem CO2 exchange to 9 years of nutrient addition at mer bleue bog. Ecosystems 13:874.

    Article  CAS  Google Scholar 

  • Juutinen S, Moore TR, Laine AM, Bubier JL, Tuittila ES, De Young A, Chong M. 2016. Responses of the mosses Sphagnum capillifolium and Polytrichum strictum to nitrogen deposition in a bog: growth, ground cover, and CO2 exchange. Botany 94:127.

    Article  CAS  Google Scholar 

  • Karlsson PS. 1985. Effects of water and mineral nutrient supply on a deciduous and an evergreen dwarf shrub: Vaccinium uliginosum L. and V. vitis-idaea L. Ecography 8:1–8.

    Article  Google Scholar 

  • Kassambara A. 2019. ggpubr: ggplot2 based publication ready plots. R package version 0.2.4. https://CRAN.R-project.org/package=ggpubr

  • Keuper F, van Bodegom PM, Dorrepaal E, Weedon JT, van Hal J, van Logtestijn RSP, Aerts R. 2012. A frozen feast: thawing permafrost increases plant-available nitrogen in subarctic peatlands. Glob Change Biol 18:1998.

    Article  Google Scholar 

  • Keuper F, Dorrepaal E, van Bodegom PM, van Logtestijn R, Venhuizen G, van Hal J, Aerts R. 2017. Experimentally increased nutrient availability at the permafrost thaw front selectively enhances biomass production of deep-rooting subarctic peatland species. Glob Change Biol 23:4257.

    Article  Google Scholar 

  • Keuper F, Wild B, Kummu M, Beer C, Blume-Werry G, Fontaine S, Gavazov K, Gentsch N, Guggenberger G, Hugelius G, Jalava M, Koven C, Krab EJ, Kehry P, Monteux S, Richter A, Shahzad T, Weedon JT, Dorrepaal E. 2020. Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming. Nat Geosci 13:560.

    Article  CAS  Google Scholar 

  • Kolari P, Pumpanen J, Kulmala L, Ilvesniemi H, Nikinmaa E, Grönholm T, Hari P. 2006. Forest floor vegetation plays an important role in photosynthetic production of boreal forests. Forest Ecol Manag 221:241.

    Article  Google Scholar 

  • Kuznetsova A, Brockhoff PB, Christensen RHB. 2017. lmerTest package: Tests in linear mixed effects models. J Stat Softw. https://doi.org/10.18637/jss.v082.i13.

    Article  Google Scholar 

  • Laine AM, Mäkiranta P, Laiho R, Mehtätalo L, Penttilä T, Korrensalo A, Minkkinen K, Fritze H, Tuittila ES. 2019. Warming impacts on boreal fen CO2 exchange under wet and dry conditions. Glob Change Biol 25:1995.

    Article  Google Scholar 

  • Le S, Josse J, Husson F. 2008. FactoMineR: An R package for multivariate analysis. J Stat Softw. 25:1–18. https://doi.org/10.18637/jss.v025.i01.

    Article  Google Scholar 

  • Lepš J, de Bello F, Šmilauer P, Doležal J. 2011. Community trait response to environment: disentangling species turnover vs intraspecific trait variability effects. Ecography 34:856.

    Article  Google Scholar 

  • Limpens J, Granath G, Gunnarsson U, Aerts R, Bayley S, Bragazza L, Bubier J, Buttler A, Van den Berg LJ, Francez AJ, Gerdol R. 2011. Climatic modifiers of the response to nitrogen deposition in peat-forming Sphagnum mosses: a meta-analysis. New Phytol 191:496.

    Article  CAS  PubMed  Google Scholar 

  • Lund M, Christensen TR, Mastepanov M, Lindroth A, Ström L. 2009. Effects of N and P fertilization on the greenhouse gas exchange in two northern peatlands with contrasting N deposition rates. Biogeosciences 6:2135.

    Article  CAS  Google Scholar 

  • McNickle GG, Gonzalez-Meler MA, Lynch DJ, Baltzer JL, Brown JS. 2016. The world’s biomes and primary production as a triple tragedy of the commons foraging game played among plants. Proc R Soc b: Biol Sci 283:20161993.

    Article  Google Scholar 

  • Metcalfe DB, Eisele B, Hasselquist NJ. 2013. Effects of nitrogen fertilization on the forest floor carbon balance over the growing season in a boreal pine forest. Biogeosciences 10:8223.

    Article  Google Scholar 

  • Muscarella R, Uriarte M. 2016. Do community-weighted mean functional traits reflect optimal strategies? Proc R Soc b: Biol Sci 283:20152434.

    Article  Google Scholar 

  • Natali SM, Schuur EAG, Trucco C, Hicks Pries CE, Crummer KG, Baron Lopez AF. 2011. Effects of experimental warming of air, soil and permafrost on carbon balance in Alaskan tundra. Glob Change Biol 17:1394.

    Article  Google Scholar 

  • Natali SM, Schuur EAG, Webb EE, Hicks Pries CE, Crummer KG. 2014. Permafrost degradation stimulates carbon loss from experimentally warmed tundra. Ecology 95:602.

    Article  PubMed  Google Scholar 

  • O’Connell KEB, Gower ST, Norman JM. 2003. Net ecosystem production of two contrasting boreal black spruce forest communities. Ecosystems 6:248.

    Article  Google Scholar 

  • O’Donnell JA, Jorgenson MT, Harden JW, McGuire AD, Kanevskiy MZ, Wickland KP. 2012. The Effects of permafrost thaw on soil hydrologic, thermal, and carbon dynamics in an Alaskan Peatland. Ecosystems 15:213.

    Article  Google Scholar 

  • Oberbauer SF, Tweedie CE, Welker JM, Fahnestock JT, Henry GH, Webber PJ, Hollister RD, Walker MD, Kuchy A, Elmore E, Starr G. 2007. Tundra CO2 fluxes in response to experimental warming across latitudinal and moisture gradients. Ecol Monogr 77:221.

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre R, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Szoecs E, Wagner H. 2019. vegan: community ecology package. R package version 2.5–6. https://CRAN.R-project.org/package=vegan.

  • Olefeldt D, Goswami S, Grosse G, Hayes D, Hugelius G, Kuhry P, McGuire AD, Romanovsky VE, Sannel ABK, Schuur EAG, Turetsky MR. 2016. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat Commun 7:13043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsson P, Linder S, Giesler R, Högberg P. 2005. Fertilization of boreal forest reduces both autotrophic and heterotrophic soil respiration. Glob Change Biol 11:1745.

    Article  Google Scholar 

  • Palmroth S, Holm Bach L, Nordin A, Palmqvist K. 2014. Nitrogen-addition effects on leaf traits and photosynthetic carbon gain of boreal forest understory shrubs. Oecologia 175:457.

    Article  PubMed  Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Werner AK, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D. 2011. A large and persistent carbon sink in the world’s forests. Science 333:988.

    Article  CAS  PubMed  Google Scholar 

  • Paquin R, Margolis H, Doucet R. 1998. Nutrient status and growth of black spruce layers and planted seedlings in response to nutrient addition in the boreal forest of Quebec. Can J Forest Res 28:729.

    Article  CAS  Google Scholar 

  • Paradis M, Mercier C, Boudreau S. 2014. Response of Betula glandulosa seedlings to simulated increases in nutrient availability, temperature and precipitation in a lichen woodland at the forest-tundra ecotone. Plant Ecol 215:305–314.

    Article  Google Scholar 

  • Parker TC, Clemmensen KE, Friggens NL, Hartley IP, Johnson D, Lindahl BD, Olofsson J, Siewert MB, Street LE, Subke JA, Wookey PA. 2020. Rhizosphere allocation by canopy-forming species dominates soil CO2 efflux in a subarctic landscape. New Phytol 227:1818.

    Article  CAS  PubMed  Google Scholar 

  • Pearce ISK, Woodin SJ, van der Wal R. 2003. Physiological and growth responses of the montane bryophyte Racomitrium lanuginosum to atmospheric nitrogen deposition. New Phytol 160:145.

    Article  CAS  PubMed  Google Scholar 

  • Press MC, Potter JA, Burke MJW, Callaghan TV, Lee JA. 1998. Responses of a subarctic dwarf shrub heath community to simulated environmental change. J Ecol 86:315.

    Article  Google Scholar 

  • R Core Team. 2019. R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. https://www.R-project.org/

  • Rantanen M, Karpechko AY, Lipponen A, Nordling K, Hyvärinen O, Ruosteenoja K, Vihma T, Laaksonen A. 2022. The Arctic has warmed nearly four times faster than the globe since 1979. Commun Earth Environ 3:168.

    Article  Google Scholar 

  • Reich PB. 2014. The world-wide “fast-slow” plant economics spectrum: a traits manifesto. J Ecol 102:275.

    Article  Google Scholar 

  • Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB. 2003. the evolution of plant functional variation: traits, spectra, and strategies. Int J Plant Sci 164:S143.

    Article  Google Scholar 

  • Roos RE, van Zuijlen K, Birkemoe T, Klanderud K, Lang SI, Bokhorst S, Wardle DA, Asplund J. 2019. Contrasting drivers of community-level trait variation for vascular plants, lichens and bryophytes across an elevational gradient. Funct Ecol 33:2430.

    Article  Google Scholar 

  • Schuur EA, Abbott BW, Commane R, Ernakovich J, Euskirchen E, Hugelius G, Grosse G, Jones M, Koven C, Leshyk V, Lawrence D. 2022. Permafrost and climate change: carbon cycle feedbacks from the warming Arctic. Ann Rev of Environ Res 47:343.

    Article  Google Scholar 

  • Segal AD, Sullivan PF. 2014. Identifying the sources and uncertainties of ecosystem respiration in Arctic tussock tundra. Biogeochemistry 21:489.

    Article  Google Scholar 

  • Shaver GR, Chapin FS. 1980. Response to fertilization by various plant growth forms in an Alaskan Tundra: nutrient accumulation and growth. Ecology 61:662.

    Article  CAS  Google Scholar 

  • Shaver GR, Bret-Harte MS, Jones MH, Johnstone J, Gough L, Laundre J, Chapin FS III. 2001. Species composition interacts with fertilizer to control long-term change in tundra productivity. Ecology 82:3163.

    Article  Google Scholar 

  • Siefert A, Fridley JD, Ritchie ME. 2014. Community functional responses to soil and climate at multiple spatial scales: when does intraspecific variation matter? PLoS One 9:e111189.

    Article  PubMed  PubMed Central  Google Scholar 

  • Skre O, Oechel WC. 1981. Moss functioning in different taiga ecosystems in interior Alaska: I. Seasonal, phenotypic, and drought effects on photosynthesis and response patterns. Oecologia. 48:50.

    Article  CAS  PubMed  Google Scholar 

  • Standen KM, Baltzer JL. 2021. Permafrost condition determines plant community composition and community- level foliar functional traits in a boreal peatland. Ecol Evol 11:10133.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S. 2009. Soil organic carbon pools in the northern circumpolar permafrost region. Glob Biogeochem Cycles. https://doi.org/10.1029/2008GB003327.

    Article  Google Scholar 

  • Turetsky MR, Mack MC, Hollingsworth TN, Harden JW. 2010. The role of mosses in ecosystem succession and function in Alaska’s boreal forest. Can J Forest Res 40:1237.

    Article  Google Scholar 

  • Turetsky MR, Bond-Lamberty B, Euskirchen E, Talbot J, Frolking S, McGuire AD, Tuittila ES. 2012. The resilience and functional role of moss in boreal and arctic ecosystems. New Phytol 196:49.

    Article  CAS  PubMed  Google Scholar 

  • Turetsky MR, Abbott BW, Jones MC, Walter Anthony K, Olefeldt D, Schuur EA, Koven C, McGuire AD, Grosse G, Kuhry P, Hugelius G, Lawrence DM, Gibson C, Sannel ABK. 2019. Permafrost collapse is accelerating carbon release. Nature 569:32.

    Article  CAS  PubMed  Google Scholar 

  • van der Heijden E, Verbeek SK, Kuiper PJC. 2000. Elevated atmospheric CO2 and increased nitrogen deposition: effects on C and N metabolism and growth of the peat moss Sphagnum recurvum P. Beauv. Var. mucronatum (Russ.) Warnst. Glob Change Biol 6:201.

    Article  Google Scholar 

  • Voigt C, Lamprecht RE, Marushchak ME, Lind SE, Novakovskiy A, Aurela M, Martikainen PJ, Biasi C. 2017. Warming of subarctic tundra increases emissions of all three important greenhouse gases: carbon dioxide, methane, and nitrous oxide. Glob Change Biol 23:3121.

    Article  Google Scholar 

  • Voigt C, Virkkala AM, Hould-Gosselin G, Bennett KA, Black TA, Detto M, Chevrier-Dion C, Guggenberger G, Hashmi W, Kohl L, Kou D, Marquis C, Marsh P, Marushchak ME, Nesic Z, Nykänen H, Saarela T, Sauheitl L, Walker B, Weiss N, Wilcox EJ, Sonnentag O. 2023. Arctic soil methane sink increases with drier conditions and higher ecosystem respiration. Nat Clim Change. 13(10):1095–1104.

    Article  CAS  Google Scholar 

  • Walker XJ, Baltzer JL, Bourgeau-Chavez L, Day NJ, Dieleman CM, Johnstone JF, Kane ES, Rogers BM, Turetsky MR, Veraverbeke S, Mack MC. 2020. Patterns of ecosystem structure and wildfire carbon combustion across six ecoregions of the north American boreal forest. Front Forests Glob Change 3:87.

    Article  Google Scholar 

  • Wang P, Limpens J, Mommer L, van Ruijven J, Nauta AL, Berendse F, Schaepman-Strub G, Blok D, Maximov TC, Heijmans MM. 2017. Above- and below-ground responses of four tundra plant functional types to deep soil heating and surface soil fertilization. J Ecol 105:947.

    Article  Google Scholar 

  • Weintraub M, Schimel J. 2003. Interactions between carbon and nitrogen mineralization and soil organic matter chemistry in arctic tundra soils. Ecosystems 6:0129.

    Article  CAS  Google Scholar 

  • Wickham H. 2016. ggplot2: Elegant graphics for data analysis. New York: Springer-Verlag.

    Book  Google Scholar 

  • Wilke CO. 2020. Cowplot: Streamlined Plot Theme and Plot Annotations for ggplot2. R package version 1.1.0. https://CRAN.R-project.org/package=cowplot

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JH, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lush C, Midgley JJ, Navas M-L, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar. 2004. The worldwide leaf economics spectrum. Nature 428:821.

    Article  CAS  PubMed  Google Scholar 

  • Xue K, Yuan M, ShiZ J, Qin Y, Deng YE, Cheng L, Wu L, He Z, Van Nostrand JD, Bracho R, Natali S. 2016. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming. Nat Clim Change 6:595.

    Article  CAS  Google Scholar 

  • Yuan ZY, Chen H. 2010. Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: literature review and meta-analyses. Crit Rev Plant Sci 29:204.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Firstly, we thank the Dehcho First Nations for permitting access to their traditional lands for this research. We also gratefully acknowledge field and laboratory assistance from W. Manning, K. McDonald, H. Baehre, J. Rabley, K. Dearborn, and J. Paul. We thank T. Moore, G. Gosselin Hould, and M. Dalva for invaluable technical and logistical support and construction of flux chambers used in our study. We benefitted greatly from suggestions from C. Wallace, N. Day, J. Musetta-Lambert, and G. McNickle. This research was supported by many funding sources: NSERC PGS-D3 and Northern Scientific Training Program to KMS, NSERC Discovery and Northern Supplement funding and CFREF Global Water Futures (project Northern Water Futures) funding to JLB, NSERC CRD funding to W. Quinton, JLB, and OS, and Canada Foundation for Innovation funding awarded to P. Marsh, JLB and OS. OS and JLB were both supported by the Canada Research Chairs program. CV was supported by the Academy of Finland project MUFFIN (no. 332196). Logistical support was provided by the Wilfrid Laurier University – Government of the Northwest Territories Partnership, as well as the Scotty Creek Research Station. Our research was approved by the Aurora Research Institute (License #16431).

Author information

Authors and Affiliations

Authors

Contributions

The study was designed by KMS, JLB, and OS. KMS and JLB performed the research. Analysis of data was performed by KMS, CV, and JLB. CV and OS contributed to methods and models used. The paper was written by KMS and AES, with support from JLB, CV, and OS on revisions.

Corresponding author

Correspondence to Jennifer L. Baltzer.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Supplementary file2 (DOCX 2125 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Standen, K.M., Sniderhan, A.E., Sonnentag, O. et al. Response of Boreal Plant Communities and Forest Floor Carbon Fluxes to Experimental Nutrient Additions. Ecosystems 27, 462–478 (2024). https://doi.org/10.1007/s10021-023-00899-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-023-00899-1

Keywords

Navigation