Skip to main content

Advertisement

Log in

Environmental Context Mediates Biodiversity–Ecosystem Functioning Relationships in Coastal Soft-sediment Habitats

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

The ongoing loss of biodiversity and global environmental changes severely affect the structure of coastal ecosystems. Consequences, in terms of ecosystem functioning, are, however, difficult to predict because the context dependency of the biodiversity–ecosystem function relationships within these heterogeneous seascapes is poorly understood. To assess the effects of biological and environmental factors in mediating ecosystem functioning (nutrient cycling) in different natural habitats, intact sediment cores were collected at 18 sites on a grain size gradient from coarse sand to silt, with varying organic matter content and vegetation. To assess ecosystem functioning, solute fluxes (O2, NH4+, PO43−, Si) across the sediment–water interface were measured. The macrofaunal communities changed along the grain size gradient with higher abundance, biomass and number of species in coarser sediments and in habitats with more vegetation. Across the whole gradient, the macrofauna cumulatively accounted for 25% of the variability in the multivariate solute fluxes, whereas environmental variables cumulatively accounted for 20%. Only the biomass and abundance of a few of the most dominant macrofauna species, not the number of species, appeared to contribute significantly to the nutrient recycling processes. Closer analyses of different sediment types (grouped into coarse, medium and fine sediment) showed that the macrofauna was an important predictor in all sediment types, but had the largest impact in fine and medium sediments. The results imply that even if the ecosystem functioning is similar in different sediment types, the underpinning mechanisms are different, which makes it challenging to generalize patterns of functioning across the heterogeneous shallow coastal zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Aller RC. 2014. Sedimentary diagenesis, depositional environments, and benthic fluxes. In: Holland HD, Turekian KK, Eds. Treatise on geochemistry, Vol. 8. 2nd edn. Oxford: Elsevier. p 293–334.

    Chapter  Google Scholar 

  • Aller RC, Aller JY. 1998. The effect of biogenic irrigation intensity and solute exchange on diagenetic reaction rates in marine sediments. J Mar Res 56:905–36.

    Article  CAS  Google Scholar 

  • Anderson MJ, Gorley RN, Clarke KR. 2008. PERMANOVA + for PRIMER. Guide to software and statistical methods, 214 pp.

  • Attard KM, Stahl H, Kamenos NA, Turner G, Burdett HL, Glud RN. 2015. Benthic oxygen exchange in a live coralline algal bed and an adjacent sandy habitat: an eddy covariance study. Mar Ecol Prog Ser 535:99–115.

    Article  CAS  Google Scholar 

  • Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR. 2011. The value of estuarine and coastal ecosystem services. Ecol Monogr 81:169–93.

    Article  Google Scholar 

  • Berkenbusch K, Rowden AA, Myers TE. 2007. Interactions between seagrasses and burrowing ghost shrimps and their influence on infaunal assemblages. J Exp Mar Biol Ecol 341:70–84.

    Article  Google Scholar 

  • Bernard G, Delgard ML, Maire O, Ciutat A, Lecroart P, Deflandre B, Duchêne JC, Grémare A. 2014. Comparative study of sediment particle mixing in a Zostera noltei meadow and a bare sediment mudflat. Mar Ecol Prog Ser 514:71–86.

    Article  Google Scholar 

  • Bertics VJ, Ziebis W. 2010. Bioturbation and the role of microniches for sulfate reduction in coastal marine sediments. Environ Microbiol 12:3022–34.

    Article  CAS  PubMed  Google Scholar 

  • Boström C, Bonsdorff E. 1997. Community structure and spatial variation of benthic invertebrates associated with Zostera marina (L.) beds in the northern Baltic Sea. J Sea Res 37:153–66.

    Article  Google Scholar 

  • Bourgeois S, Archambault P, Witte U. 2017. Organic matter remineralization in marine sediments: a pan-arctic synthesis. Global Biogeochem Cycles 31:190–213.

    Article  CAS  Google Scholar 

  • Braeckman U, Foshtomi MY, Gansbeke D, Meysman F, Soetaert K, Vincx M, Vanaverbeke J. 2014. Variable importance of macrofaunal functional biodiversity for biogeochemical cycling in temperate coastal sediments. Ecosystems 17:720–37.

    CAS  Google Scholar 

  • Bulling MT, Solan M, Dyson KE, Hernandez-Milian G, Luque P, Pierce GJ, Raffaelli D, Paterson DM, White PCL. 2008. Species effects on ecosystem processes are modified by faunal responses to habitat composition. Oecologia 158:511–20.

    Article  PubMed  Google Scholar 

  • Caffrey JM, Kemp WM. 1991. Seasonal and spatial patterns of oxygen production, respiration and root-rhizome release in Potamogeton perfoliatus L. and Zostera marina L. Aquat Bot 40:109–28.

    Article  Google Scholar 

  • Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S. 2012. Biodiversity loss and its impact on humanity. Nature 486:59–67.

    Article  CAS  Google Scholar 

  • Castel J, Labourg P-J, Escaravage V, Auby I, Garcia ME. 1989. Influence of seagrass beds and oyster parks on the abundance and biomass patterns of meio- and macrobenthos in tidal flats. Estuar Coast Shelf Sci 28:71–85.

    Article  Google Scholar 

  • Chapin FSIII, Walker BH, Hobbs RJ, Hooper DU, Lawton JH, Sala OE, Tilman D. 1997. Biotic control over the functioning of ecosystems. Science 277:500–4.

    Article  CAS  Google Scholar 

  • Christensen B, Vedel A, Kristensen E. 2000. Carbon and nitrogen fluxes in sediment inhabited by suspension-feeding (Nereis diversicolor) and non-suspension-feeding (N-virens) polychaetes. Mar Ecol Prog Ser 192:203–17.

    Article  Google Scholar 

  • Clarke KR, Gorley RN, Somerfield PJ, Warwick RM. 2014. Change in marine communities: an approach to statistical analysis and interpretation. 3rd edn. PRIMER-E: Plymouth.

    Google Scholar 

  • Clarke KR, Gorley RN. 2015. PRIMER v7: user manual/tutorial. Plymouth: PRIMER-E.

    Google Scholar 

  • Emmerson MC, Solan M, Emes C, Paterson DM, Raffaelli D. 2001. Consistent patterns and the idiosyncratic effects of biodiversity in marine ecosystems. Nature 411:73–7.

    Article  CAS  PubMed  Google Scholar 

  • Fonseca MS, Fisher JS. 1986. A comparison of canopy friction and sediment movement between four species of seagrass with reference to their ecology and restoration. Mar Ecol Prog Ser 29:15–22.

    Article  Google Scholar 

  • Fredriksen S, De Backer A, Boström C, Christie H. 2010. Infauna fromZostera marina L. meadows in Norway. Differences in vegetated and unvegetated areas. Mar Biol Res 6:189–200.

    Article  Google Scholar 

  • Gamfeldt L, Lefcheck JS, Byrnes JEK, Cardinale BJ, Duffy JE, Griffin JN. 2015. Marine biodiversity and ecosystem functioning: what’s known and what’s next? Oikos 124:252–65.

    Article  Google Scholar 

  • Gammal J, Norkko J, Pilditch CA, Norkko A. 2017. Coastal hypoxia and the importance of benthic macrofauna communities for ecosystem functioning. Estuaries Coasts 40:457–68.

    Article  CAS  Google Scholar 

  • Gibbs M, Funnell G, Pickmere S, Norkko A, Hewitt J. 2005. Benthic nutrient fluxes along an estuarine gradient: influence of the pinnid bivalve Atrina zelandica in summer. Mar Ecol Prog Ser 288:151–64.

    Article  Google Scholar 

  • Glud RN. 2008. Oxygen dynamics of marine sediments. Mar Biol Res 4:243–89.

    Article  Google Scholar 

  • Godbold JA. 2008. Marine benthic biodiversity–ecosystem function relations in complex systems. PhD thesis, University of Aberdeen, Scotland. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.493491.

  • Gustafsson C, Norkko A. 2016. Not all plants are the same: exploring metabolism and nitrogen fluxes in a benthic community composed of different aquatic plant species. Limnol Oceanogr 61:1787–99.

    Article  CAS  Google Scholar 

  • Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D’Agrosa C, Bruno JF, Casey KS, Ebert C, Fox HE, Fujita R, Heinemann D, Lenihan HS, Madin EMP, Perry MT, Selig ER, Spalding M, Steneck R, Watson R. 2008. A global map of human impact on marine ecosystems. Science 319:948–52.

    Article  CAS  PubMed  Google Scholar 

  • Hedman JE, Gunnarsson JS, Samuelsson G, Gilbert F. 2011. Particle reworking and solute transport by the sediment-living polychaetes Marenzelleria neglecta and Hediste diversicolor. J Exp Mar Biol Ecol 407:294–301.

    Article  CAS  Google Scholar 

  • Hewitt JE, Thrush Simon F, Dayton Paul K, Bonsdorff Erik. 2007. The effect of spatial and temporal heterogeneity on the design and analysis of empirical studies of scale-dependent systems. Am Nat 169:398–408.

    Article  Google Scholar 

  • Hiddink JG, Davies TW, Perkins M, Machairopoulou M, Neill SP. 2009. Context dependency of relationships between biodiversity and ecosystem functioning is different for multiple ecosystem functions. Oikos 118:1892–900.

    Article  Google Scholar 

  • Huettel M, Berg P, Kostka JE. 2014. Benthic exchange and biogeochemical cycling in permeable sediments. Ann Rev Mar Sci 6:23–51.

    Article  PubMed  Google Scholar 

  • Janssen F, Huettel M, Witte U. 2005. Pore-water advection and solute fluxes in permeable marine sediments (II): benthic respiration at three sandy sites with different permeabilities (German Bight, North Sea). Limnol Oceanogr 50:779–92.

    Article  CAS  Google Scholar 

  • Kauppi L, Norkko J, Ikonen J, Norkko A. 2017. Seasonal variability in ecosystem functions: quantifying the contribution of invasive species to nutrient cycling in coastal ecosystems. Mar Ecol Prog Ser 572:193–207.

    Article  CAS  Google Scholar 

  • Koroleff F. 1976. Total and organic nitrogen. In: Grasshoff K, Ed. Methods of seawater analysis. New York: Verlag Chemie.

    Google Scholar 

  • Kristensen E, Kostka JE. 2005. Macrofaunal burrows and irrigation in marine sediment: microbiological and biogeochemical interactions. In: Kristensen E, Haese RR, Kostka JE, Eds. Interactions between macro- and microorganisms in marine sediments. Washington: American Geophysical Union.

    Chapter  Google Scholar 

  • Kristensen E, Penha-Lopes G, Delefosse M, Valdemarsen T, Quintana CO, Banta GT. 2012. What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Mar Ecol Prog Ser 446:285–302.

    Article  Google Scholar 

  • Larsen TH, Williams NM, Kremen C. 2005. Extinction order and altered community structure rapidly disrupt ecosystem functioning. Ecol Lett 8:538–47.

    Article  PubMed  Google Scholar 

  • Levin LA, Boesch DF, Covich A, Dahm C, Erséus C, Ewel KC, Kneib RT, Moldenke A, Palmer MA, Snelgrove P, Strayer D, Weslawski JM. 2001. The function of marine critical transition zones and the importance of sediment biodiversity. Ecosystems 4:430–51.

    Article  CAS  Google Scholar 

  • Link H, Chaillou G, Forest A, Piepenburg D, Archambault P. 2013. Multivariate benthic ecosystem functioning in the Arctic—benthic fluxes explained by environmental parameters in the southeastern Beaufort Sea. Biogeosciences 10:5911–29.

    Article  Google Scholar 

  • Lohrer AM, Thrush SF, Hewitt JE, Berkenbusch K, Ahrens M, Cummings VJ. 2004. Terrestrially derived sediment: response of marine macrobenthic communities to thin terrigenous deposits. Mar Ecol Prog Ser 273:121–38.

    Article  Google Scholar 

  • Lohrer AM, Thrush SF, Hewitt JE, Kraan C. 2015. The up-scaling of ecosystem functions in a heterogeneous world. Sci Rep 5:10349.

    Article  PubMed  PubMed Central  Google Scholar 

  • McGinnis DF, Sommer S, Lorke A, Glud RN, Linke P. 2014. Quantifying tidally driven benthic oxygen exchange across permeable sediments: an aquatic eddy correlation study. J Geophys Res Oceans 119:6918–32.

    Article  Google Scholar 

  • Meadows PS, Meadows A, Murray JMH. 2012. Biological modifiers of marine benthic seascapes: their role as ecosystem engineers. Geomorphology 157:31–48.

    Article  Google Scholar 

  • Mermillod-Blondin F, Rosenberg R. 2006. Ecosystem engineering: the impact of bioturbation on biogeochemical processes in marine and freshwater benthic habitats. Aquat Sci 68:434–42.

    Article  CAS  Google Scholar 

  • Mogg AOM, Attard KM, Stahl H, Brand T, Turnewitsch R, Sayer MDJ. 2017. The influence of coring method on the preservation of sedimentary and biogeochemical features when sampling soft-bottom, shallow coastal environments. Limnol Oceanogr Methods. https://doi.org/10.1002/lom3.10211.

    Article  Google Scholar 

  • Moodley L, Middelburg JJ, Soetaert K, Boschker HTS, Herman PMJ, Heip CHR. 2005. Similar rapid response to phytodetritus deposition in shallow and deep-sea sediments. J Mar Res 63:457–69.

    Article  CAS  Google Scholar 

  • Naeem S. 2008. Advancing realism in biodiversity research. Trends Ecol Evol 23:414–16.

    Article  PubMed  Google Scholar 

  • Needham HR, Pilditch CA, Lohrer AM, Thrush SF. 2011. Context-specific bioturbation mediates changes to ecosystem functioning. Ecosystems 14:1096–109.

    Article  CAS  Google Scholar 

  • Norkko A, Villnäs A, Norkko J, Valanko S, Pilditch C. 2013. Size matters: implications of the loss of large individuals for ecosystem function. Sci Rep 3:2646.

    Article  PubMed  PubMed Central  Google Scholar 

  • Norkko J, Gammal J, Hewitt J, Josefson A, Carstensen J, Norkko A. 2015. Seafloor ecosystem function relationships. in situ patterns of change across gradients of increasing hypoxic stress. Ecosystems 18:1424–39.

    Article  CAS  Google Scholar 

  • Pearson TH, Rosenberg R. 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr Mar Biol Ann Rev 16:229–311.

    Google Scholar 

  • Poage MA, Barrett JE, Virginia RA, Wall DH. 2008. The influence of soil geochemistry on nematode distribution, McMurdo dry valleys, Antarctica. Arct Antarct Alp Res 40:119–28.

    Article  Google Scholar 

  • Pratt DR, Lohrer AM, Pilditch CA, Thrush SF. 2014. Changes in ecosystem function across sedimentary gradients in estuaries. Ecosystems 17:182–94.

    Article  Google Scholar 

  • Reise K. 2002. Sediment mediated species interactions in coastal waters. J Sea Res 48:127–41.

    Article  Google Scholar 

  • Reiss J, Bridle JR, Montoya JM, Woodward G. 2009. Emerging horizons in biodiversity and ecosystem functioning research. Trends Ecol Evol 24:505–14.

    Article  PubMed  Google Scholar 

  • Riisgård HU, Kamermans P. 2001. Switching between deposit and suspension feeding in coastal zoobenthos. In: Reise K, Ed. Ecological comparisons of sedimentary shores. Berlin: Springer. p 73–101.

    Chapter  Google Scholar 

  • Sereda JM, Hudson JJ. 2011. Empirical models for predicting the excretion of nutrients (N and P) by aquatic metazoans: taxonomic differences in rates and element ratios. Freshw Biol 56:250–63.

    Article  CAS  Google Scholar 

  • Snelgrove PVR, Thrush SF, Wall DH, Norkko A. 2014. Real world biodiversity–ecosystem functioning: a seafloor perspective. Trends Ecol Evol 29:398–405.

    Article  PubMed  Google Scholar 

  • Solan M, Cardinale BJ, Downing AL, Engelhardt KAM, Ruesink JL, Srivastava DS. 2004. Extinction and ecosystem function in the marine benthos. Science 306:1177–80.

    Article  CAS  PubMed  Google Scholar 

  • Solan M, Godbold JA, Symstad A, Flynn DFB, Bunker D. 2009. Biodiversity–ecosystem function research and biodiversity futures: early bird catches the worm or a day late and a dollar short? In: Naeem S, Bunker DE, Hector A, Loreau M, Perrings C, Eds. Biodiversity and human impacts: ecological and societal implications. Oxford: Oxford University Press.

    Google Scholar 

  • Stachowicz JJ, Bruno JF, Duffy JE. 2007. Understanding the effects of marine biodiversity on communities and ecosystems. Annu Rev Ecol Evol Syst 38:739–66.

    Article  Google Scholar 

  • Sylvain ZA, Wall DH, Cherwin KL, Peters DPC, Reichmann LG, Sala OE. 2014. Soil animal responses to moisture availability are largely scale, not ecosystem dependent: insight from a cross-site study. Glob Change Biol 20:2631–43.

    Article  Google Scholar 

  • Thrush SF, Hewitt JE, Gibbs M, Lundquist C, Norkko A. 2006. Functional role of large organisms in intertidal communities: community effects and ecosystem function. Ecosystems 9:1029–40.

    Article  Google Scholar 

  • Thrush SF, Hewitt JE, Kraan C, Lohrer AM, Pilditch CA, Douglas E. 2017. Changes in the location of biodiversity–ecosystem function hot spots across the seafloor landscape with increasing sediment nutrient loading. Proc R Soc B Biol Sci 284:20162861.

    Article  CAS  Google Scholar 

  • Thrush SF, Hewitt JE, Norkko A, Nicholls PE, Funnell GA, Ellis JI. 2003. Habitat change in estuaries: predicting broad-scale responses of intertidal macrofauna to sediment mud content. Mar Ecol Prog Ser 263:101–12.

    Article  Google Scholar 

  • Urban-Malinga B, Drgas A, Gromisz S, Barnes N. 2014. Species-specific effect of macrobenthic assemblages on meiobenthos and nematode community structure in shallow sandy sediments. Mar Biol 161:195–212.

    Article  PubMed  Google Scholar 

  • Vanni MJ, McIntyre PB. 2016. Predicting nutrient excretion of aquatic animals with metabolic ecology and ecological stoichiometry: a global synthesis. Ecology 97:3460–71.

    Article  PubMed  Google Scholar 

  • Villnäs A, Hewitt J, Snickars M, Westerbom M, Norkko A. 2017. Template for using biological trait groupings when exploring large-scale variation in seafloor multifunctionality. Ecol Appl. https://doi.org/10.1002/eap.1630.

    Article  PubMed  Google Scholar 

  • Villnäs A, Norkko J, Hietanen S, Josefson AB, Lukkari K, Norkko A. 2013. The role of recurrent disturbances for ecosystem multifunctionality. Ecology 94:2275–87.

    Article  PubMed  Google Scholar 

  • Virginia RA, Wall DH. 1999. How soils structure communities in the antarctic dry valleys. Bioscience 49:973–83.

    Article  Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J, Melillo JM. 1997. Human domination of Earth’s ecosystems. Science 277:494–9.

    Article  CAS  Google Scholar 

  • Wall DH, Bradford MA, St. John MG, Trofymow JA, Behan-Pelletier V, Bignell DE, Dangerfield JM, Parton WJ, Rusek J, Voigt W, Wolters V, Gardel HZ, Ayuke FO, Bashford R, Beljakova OI, Bohlen PJ, Brauman A, Flemming S, Henschel JR, Johnson DL, Jones TH, Kovarova M, Kranabetter JM, Kutny LES, Lin K-C, Maryati M, Masse D, Pokarzhevskii A, Rahman H, SabarÁ MG, Salamon J-A, Swift MJ, Varela A, Vasconcelos HL, White DON, Zou X. 2008. Global decomposition experiment shows soil animal impacts on ddujecomposition are climate-dependent. Glob Change Biol 14:2661–77.

    Google Scholar 

  • Wentworth CK. 1922. A scale of grade and class terms for clastic sediments. J Geol 30:377–92.

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by Walter and Andrée de Nottbeck Foundation (JG, GB) and the BONUS COCOA project, which was supported by BONUS (Art 185), funded jointly by the EU and the Academy of Finland (AN), and the University of Helsinki (3-year grant to JN). We sincerely thank Judi Hewitt for valuable advice on statistical analyses, Emmi Hänninen for video analyses, and Hanna Halonen and trainees at Tvärminne Zoological Station for valuable practical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna Gammal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 240 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gammal, J., Järnström, M., Bernard, G. et al. Environmental Context Mediates Biodiversity–Ecosystem Functioning Relationships in Coastal Soft-sediment Habitats. Ecosystems 22, 137–151 (2019). https://doi.org/10.1007/s10021-018-0258-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-018-0258-9

Keywords

Navigation