Skip to main content
Log in

Forest Structure Affects the Stoichiometry of Periphyton Primary Producers in Mountain Streams of Northern Patagonia

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Riparian zones are major components of stream ecosystems that influence the physical, chemical, and biological parameters. In particular, the distribution of vertical foliage and the structure of riparian vegetation determine light availability in canopied streams. Here, we analyzed how forest structure will modify light availability and thus affect primary producers’ photosynthetic parameters and the periphyton stoichiometry of mountain streams. We carried out field sampling in four streams with different canopies located in the North-Patagonian Andes and conducted a field experiment in which light conditions were manipulated for four months. Then, we linked our results to qualitative climate change scenarios for North-Patagonian forest predicting how future climate change will affect primary producers and periphyton stoichiometry in low-order streams through modifications in the structure of canopied zones. Finally, we found that biomass, photosynthetic parameters and the elemental content of periphyton exhibited a bell-shaped relationship with light availability which was, in turn, dependent on canopy cover. These trends are characterized by an increase from low light up to 250 μmol m−2 s−1 and a decline when light is over 750 μmol m−2 s−1. Thus, intermediate light resulted in optimal conditions for primary producers’ photosynthesis; however, these intermediate canopied zones are predicted to decrease in the future. Therefore, we predict changes in stream ecosystem stoichiometry due to variations in primary producers’ photosynthesis, and, consequently, periphyton elemental composition as an outcome of forest structure modifications due to climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Allen CD et al. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–84.

    Article  Google Scholar 

  • Álvarez C, Veblen TT, Christie DA, González-Reyes Á. 2015. Relationships between climate variability and radial growth of Nothofagus pumilio near altitudinal treeline in the Andes of northern Patagonia, Chile. For Ecol Manag 342:112–21.

    Article  Google Scholar 

  • Anderson M. 1964. Studies of the woodland light climate: I. The photographic computation of light conditions. J Ecol 52:27–41.

    Article  Google Scholar 

  • Barros VR, et al. 2013. Cambio climático en Argentina; tendencias y proyecciones. Barros VR, Vera C editors. Tercera Comunicacion de la República Argentina a la Convención Marco de las Naciones Unidas sobre Cambio Climático. Buenos Aires, Argentina: Centro de Investigaciones del Mar y la Atmósfera, Secretaria de Ambiente y Desarrollo Sustentable de la Nación, p 341.

  • Boyero L et al. 2011. A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. Ecol Lett 14:289–94.

    Article  PubMed  Google Scholar 

  • Chan T, et al. 2013. Quality control of photosystem II: lipid peroxidation accelerates photoinhibition under excessive illumination. PLoS One 7.

  • Croce R, van Amerongen H. 2014. Natural strategies for photosynthetic light harvesting. Nat Chem Biol 10:492–501.

    Article  CAS  PubMed  Google Scholar 

  • Cross WF, Benstead JP, Frost PC, Thomas SA. 2005. Ecological stoichiometry in freshwater benthic systems: recent progress and perspectives. Freshw Biol 50:1895–912.

    Article  CAS  Google Scholar 

  • Daniels LD, Veblen T. 2004. Spatiotemporal influences of climate on altitudinal treeline in northern Patagonia. Ecology 85:1284–96.

    Article  Google Scholar 

  • De Nicola M, Hoagland KD, Roemer S. 1992. Influences of canopy cover on spectral irradiance and periphyton assemblages in a Prairie stream. J N Am Benthol Soc 114:391–404.

    Google Scholar 

  • Derks A, Schaven K, Bruce D. 2015. Diverse mechanisms for photoprotection in photosynthesis. Dynamic regulation of photosystem II excitation in response to rapid environmental change. Biochim Biophys Acta 1847:468–85.

    Article  CAS  PubMed  Google Scholar 

  • Dial RJ, et al. 2007. Changes in the alpine forest-tundra ecotone commensurate with recent warming in southcentral Alaska: evidence from orthophotos and field plots. J Geophys Res 112.

  • Díaz Villanueva V, Bastidas Navarro M, Albariño R. 2016. Seasonal patterns of organic matter stoichiometry along a mountain catchment. Hydrobiologia.

  • Dirnböck T, Essl F, Rabitsch W. 2011. Disproportional risk for habitat loss of high-altitude endemic species under climate change. Glob Change Biol 17:990–6.

    Article  Google Scholar 

  • Donato DC. 2013. Limits to upward movement of subalpine forests in a warming climate. Proc Natl Acad Sci USA 110:7971–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eaton AD, et al. 2005. Standard methods for the examination of water and wastewater. Washington: American Public Health Association, American Water Works Association.

  • Frost P, Stelzer RS, Lamberti GA, Elser JJ. 2002. Ecological stoichiometry of trophic interactions in the benthos: understanding the role of C:N: P ratios in lentic and lotic habitats. J N Am Benthol Soc 21:515–28.

    Article  Google Scholar 

  • Frost PC et al. 2007. Effects of dissolved organic matter and ultraviolet radiation on the accrual, stoichiometry and algal taxonomy of stream periphyton. Freshw Biol 52:319–30.

    Article  CAS  Google Scholar 

  • Frost PC, Hillebrand H, Kahlert M. 2005. Low algal carbon content and its effect on the C:P stoichiometry of periphyton. Freshw Biol 50:1800–7.

    Article  CAS  Google Scholar 

  • Geider RJ. 1987. Light and temperature dependence of the carbon to chlorophyll a ratio in microalgae and cyanobacteria: implications for physiology and growth of phytoplankton. New Phytol 106:1–34.

    Article  CAS  Google Scholar 

  • Gjerløv C, Richardson JS. 2010. Experimental increases and reductions of light to streams: effects on periphyton and macroinvertebrate assemblages in a coniferous forest landscape. Hydrobiologia 652:195–206.

    Article  Google Scholar 

  • Goedkoop W, Johnson RK. 1996. Pelagic-benthic coupling: Profundal benthic community response to spring diatom deposition in mesotrophic Lake Erken. Limnol Oceanogr 41:636–47.

    Article  CAS  Google Scholar 

  • Graham AA, McCaughan DJ, McKee FS. 1987. Measurement of surface area of stones. Hydrobiologia 157:85–7.

    Article  Google Scholar 

  • Grigorév AA, Moiseev PA, Nagimov ZY. 2013. Dynamics of the timberline in high mountain areas of the nether-polar Urals under the influence of current climate change. Russ J Ecol 44:312–23.

    Article  Google Scholar 

  • Harsch MA, Hulme PE, McGlone MS, Duncan RP. 2009. Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol Lett 12:1040–9.

    Article  PubMed  Google Scholar 

  • Hill WR, Dimick SM. 2002. Effects of riparian leaf dynamics on periphyton photosynthesis and light utilisation efficienc. Freshw Biol 47:1245–56.

    Article  CAS  Google Scholar 

  • Hill WR, Fanta SE. 2008. Phosphorus and light colimit periphyton growth at subsaturating irradiances. Freshw Biol 23:215–25.

    Google Scholar 

  • Hill WR, Fanta SE, Roberts BJ. 2009. Quantifying phosphorus and light effects in stream algae. Limnol Oceanogr 54:368–80.

    Article  CAS  Google Scholar 

  • Hill WR, Ryon MG, Schilling EM. 1995. Light limitation in a stream ecosystem: responses by primary producers and consumers. Ecology 76:1297–309.

    Article  Google Scholar 

  • Hillebrand H. 2005. Light regime and consumer control of autotrophic biomass. J Ecol 93:758–69.

    Article  Google Scholar 

  • Hillebrand H, Kahlert M. 2002. Effect of grazing and water column nutrient supply on biomass and nutrient content of sediment microalgae. Aquat Bot 72:143–59.

    Article  Google Scholar 

  • Horton P et al. 2008. Photosynthetic acclimation: does the dynamic structure and macro-organisation of photosystem II in higher plant grana membranes regulate light harvesting states? FEBS J 275:1069–79.

    Article  CAS  PubMed  Google Scholar 

  • Iglesias V et al. 2012. Climate and local controls of long-term vegetation dynamics in northern Patagonia (Lat 41°S). Quat Res 78:502–12.

    Article  Google Scholar 

  • Khatoon M et al. 2009. Quality control of photosystem II: thylakoid unstacking is necessary to avoid further damage to the D1 protein and to facilitate D1 degradation under light stress in spinach thylakoids. J Biol Chem 284:25343–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kominoski JS, Rosemond AD. 2012. Conservation from the bottom up: forecasting effects of global change on dynamics of organic matter and management needs for river networks. Freshw Sci 31:51–68.

    Article  Google Scholar 

  • Körner C. 2007. Climatic treelines: conventions, global patterns, causes. Erdkunde 61:316–24.

    Article  Google Scholar 

  • Macias-Fauria M, Johnson EA. 2013. Warming-induced upslope advance of subalpine forest is severely limited by geomorphic processes. Proc Natl Acad Sci USA 110:8117–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackey KRM, Paytan A, Grossman AR, Bailey S. 2008. A photosynthetic strategy for coping in a high-light, low-nutrient environment. Limnol Oceanogr 53:900–13.

    Article  CAS  Google Scholar 

  • Magnin A, Puntieri J, Villalba R. 2014. Interannual variations in primary and secondary growth of Nothofagus pumilio and their relationships with climate. Trees 28:1463–71.

    Article  Google Scholar 

  • Magrin GO, et al. 2014. Central and South America. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL, Eds. Climate Change 2014: Impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, pp 1499–566.

  • Marcott SA, Shakun JD, Clark PU, Mix AC. 2013. A reconstruction of regional and global temperature for the past 11,300 years. Science 339:1198–201.

    Article  CAS  PubMed  Google Scholar 

  • Markert B et al. 1997. A contribution to the study of the heavy-metal and nutritional element status of some lakes in the southern Andes of Patagonia (Argentina). Sci Total Environ 206:1–15.

    Article  CAS  Google Scholar 

  • Martínez Pastur GJ et al. 2011. Canopy structure analysis for estimating forest regeneration dynamics and growth in Nothofagus pumilio forests. Ann Forest Sci 68:587–94.

    Article  Google Scholar 

  • Martyniuk N, Modenutti B, Balseiro E. 2014. Can increased glacial melting resulting from global change provide attached algae with transient protection against high irradiance? Freshw Biol 59:2290–302.

    Article  CAS  Google Scholar 

  • Massaccesi G, Roig FA, Martínez Pastur GJ, Barrera MD. 2007. Growth patterns of Nothofagus pumilio trees along altitudinal gradients in Tierra del Fuego, Argentina. Trees 22:245–55.

    Article  Google Scholar 

  • Maxwell K, Johnson GN. 2000. Chlorophyll fluorescence—a practical guide. J Exp Bot 51(345):659–68.

    Article  CAS  PubMed  Google Scholar 

  • Milly PCD, Dunne KA, Vecchia AV. 2005. Global pattern of trends in streamflow and water availability in a changing climate. Nature 438:347–50.

    Article  CAS  PubMed  Google Scholar 

  • Mladenov N et al. 2011. Dust inputs and bacteria influence dissolved organic matter in clear alpine lakes. Nat Commun 2:405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Modenutti B et al. 2010. Structure and dynamic of food webs in Andean North Patagonian freshwater systems: organic matter, light and nutrient relationships. Ecol Aust 20:95–114.

    Google Scholar 

  • Montgomery RA, Chazdon RL. 2001. Forest structure, canopy architecture and light transmittance in tropical wet forests. Ecol Eng 82:2707–18.

    Google Scholar 

  • Mulholland PJ, Roberts BJ, Hill WR, Smith JG. 2009. Stream ecosystem responses to the 2007 spring freeze in the southeastern United States: unexpected effects of climate change. Glob Change Biol 15:1767–76.

    Article  Google Scholar 

  • Müller P, Li XP, Niyogi KK. 2001. Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–66.

    Article  PubMed  PubMed Central  Google Scholar 

  • Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI. 2007. Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta 1767:414–21.

    Article  CAS  PubMed  Google Scholar 

  • Nusch EA. 1980. Comparison of different methods for chlorophyll and phaeopigment determination. Archiv für Hydrobiologie-Beiheft Ergebnisse der Limnologie 14:14–36.

    CAS  Google Scholar 

  • O’Grady AP, Tissue DT, Beadle CL. 2011. Canopy processes in a changing climate. Tree Physiol 31:887–92.

    Article  PubMed  Google Scholar 

  • Palmer MA et al. 2009. Climate change and river ecosystems: protection and adaptation options. Environ Manag 44:1053–68.

    Article  Google Scholar 

  • Paulsen J, Körner C. 2014. A climate-based model to predict potential treeline position around the globe. Alpine Botany.

  • Pedrozo F, Chillrud S, Temporetti P, Diaz M. 1993. Chemical composition and nutrient limitation in rivers and lakes of northern Patagonian Andes (39.5° -42°S; 71°W) (Rep. Argentina). Verh Int Verein Limnol 25:207–14.

    CAS  Google Scholar 

  • Rader R, Belish T. 1997. Effects of ambient and enhanced UV-B radiation on periphyton in a mountain stream. J Freshw Ecol 12:615–28.

    Article  Google Scholar 

  • Randin CF et al. 2013. Do the elevational limits of deciduous tree species match their thermal latitudinal limits? Glob Ecol Biogeogr 22:913–23.

    Article  Google Scholar 

  • Rehm EM, Feeley KJ. 2013. Forest patches and the upward migration of timberline in the southern Peruvian Andes. For Ecol Manag 305:204–11.

    Article  Google Scholar 

  • Rohácek K, Soukupová J, Bartak M. 2008. Chlorophyll fluorescence: a wonderful tool to study plant physiology and plant stress. Plant Cell Compartments—Selected Topics 41–104.

  • Sterner RW, Elser JJ. 2002. Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton: Princeton University Press, xxi

  • Sterner RW et al. 1997. The light: nutrient ration in lakes: the balance of energy and materials affects ecosystem structure and process. Am Nat 150:663–84.

    Article  CAS  PubMed  Google Scholar 

  • Stovall JP, Keeton WS, Kraft CE. 2009. Late-successional riparian forest structure results in heterogeneous periphyton distributions in low-order streams. Can J For Res 39:2343–54.

    Article  Google Scholar 

  • Suarez ML, Kitzberger T. 2010. Differential effects of climate variability on forest dynamics along a precipitation gradient in northern Patagonia. J Ecol 98:1023–34.

    Article  Google Scholar 

  • Svenning JC, Sandel B. 2013. Disequilibrium vegetation dynamics under future climate change. Am J Bot 100:1266–86.

    Article  PubMed  Google Scholar 

  • Sweeney BW. 1992. Streamside forests and the physical, chemical, and trophic characteristics of Piedmont streams in Eastern North America. Water Sci Technol 26:2653–73.

    CAS  Google Scholar 

  • Takahashi S, Murata N. 2008. How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13:178–82.

    Article  CAS  PubMed  Google Scholar 

  • Team RDC. 2015. A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

  • Torres AD et al. 2015. Seed production and recruitment in primary and harvested Nothofagus pumilio forests: influence of regional climate and years after cuttings. For Syst 24:016.

    Google Scholar 

  • Vannote RL et al. 1980. The river continuum concept. Can J Fish Aquat Sci 37:130–7.

    Article  Google Scholar 

  • Veblen TT, Hill RS, Read J. 1996. The ecology and biogeography of Nothofagus forests. New Haven: Yale University Press.

    Google Scholar 

  • Villalba R et al. 1997. Recent trends in tree-ring records from high elevation sites in the Andes of northern Patagonia. Clim Change 36:425–54.

    Article  Google Scholar 

  • Webster JR, Patten BC. 1979. Effects of watershed perturbation on stream potassium and calcium dynamics. Ecol Monogr 49:51–72.

    Article  CAS  Google Scholar 

  • Wetzel RG. 2001. Limnology : lake and river ecosystems. San Diego: Academic Press.

    Google Scholar 

  • Williams MI, Dumroese RK. 2013. Preparing for climate change: forestry and assisted migration. J For 111:287–97.

    Google Scholar 

  • Williamson GJ et al. 2014. Projecting canopy cover change in Tasmanian eucalypt forests using dynamically downscaled regional climate models. Reg Environ Change 14:1373–86.

    Article  Google Scholar 

  • Xenopoulos MA, Frost PC, Elser JJ. 2002. Joint effects of UV radiation and phosphorus supply on algal growth rate and elemental composition. Ecology 83:423–35.

    Article  Google Scholar 

  • Yamamoto Y et al. 2014. Quality control of PSII: behavior of PSII in the highly crowded grana thylakoids under excessive light. Plant Cell Physiol 55:1206–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young KR, Leon B. 2007. Tree-line changes along the Andes: implications of spatial patterns and dynamics. Philos Trans R Soc Lond B Biol Sci 362:263–72.

    Article  PubMed  Google Scholar 

  • Zhu K et al. 2014. Dual impacts of climate change: forest migration and turnover through life history. Glob Chang Biol 20:251–64.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank to Paul Frost and one anonymous reviewer whose comments and suggestions greatly improved this manuscript. We thank the National Park Administration of Argentina for authorization to carry out this study. This work was supported by Fondo Nacional de Ciencia y Tecnica PICT 2012-1168 and PICT 2014-1002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolás Martyniuk.

Additional information

Author contribution

Nicolás Martyniuk designed the study, performed research, analyzed data, and wrote the paper. Beatriz Modenutti designed the study, analyzed data, and wrote the paper. Esteban Balseiro designed the study, analyzed data, and wrote the paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 51 kb)

Supplementary material 2 (DOCX 277 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martyniuk, N., Modenutti, B. & Balseiro, E. Forest Structure Affects the Stoichiometry of Periphyton Primary Producers in Mountain Streams of Northern Patagonia. Ecosystems 19, 1225–1239 (2016). https://doi.org/10.1007/s10021-016-9996-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-016-9996-8

Keywords

Navigation