Skip to main content

Advertisement

Log in

Ecosystem Carbon Fluxes in Response to Warming and Clipping in a Tallgrass Prairie

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Global warming and land-use change could have profound impacts on ecosystem carbon (C) fluxes, with consequent changes in C sequestration and its feedback to climate change. However, it is not well understood how net ecosystem C exchange (NEE) and its components respond to warming and mowing in tallgrass prairie. We conducted two warming experiments, one long term with a 1.7°C increase in a C4-dominated grassland (Experiment 1), and one short term with a 2.8°C increase in a C3-dominated grassland (Experiment 2), to investigate main and interactive effects of warming and clipping on ecosystem C fluxes in the Great Plains of North America during 2009–2011. An infrared radiator was used to simulate climate warming and clipping once a year mimicked mowing in both experiments. The results showed that warming significantly increased ecosystem respiration (ER), slightly increased GPP, with the net outcome (NEE) being little changed in Experiment 1. In contrast, warming significantly suppressed GPP and ER in both years, with the net outcome being enhanced in NEE (more C sequestration) in 2009–2010 in Experiment 2. The C4-dominated grassland showed a much higher optimum temperature for C fluxes than the C3-dominated grassland, which may partly contribute to the different warming effects in the two experiments. Clipping significantly enhanced GPP, ER, and NEE in both experiments but did not significantly interact with warming in impacting C fluxes in either experiment. The warming-induced changes in ecosystem C fluxes correlated significantly with C4 biomass proportion but not with warming-induced changes in either soil temperature or soil moisture across the plots in the experiments. Our results demonstrate that carbon fluxes in the tallgrass prairie are highly sensitive to climate warming and clipping, and C3/C4 plant functional types may be important factor in determining ecosystem response to climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Aires LMI, Pio CA, Pereira JS. 2008. Carbon dioxide exchange above a Mediterranean C3/C4 grassland during two climatologically contrasting years. Global Change Biol 14:539–55.

    Article  Google Scholar 

  • Anten NPR, Ackerly DD. 2001. Canopy-level photosynthetic compensation after defoliation in a tropical understorey palm. Funct Ecol 15:252–62.

    Article  Google Scholar 

  • Caspersen JP, Pacala SW, Jenkins JC, Hurtt GC, Moorcroft PR, Birdsey RA. 2000. Contributions of land-use history to carbon accumulation in US forests. Science 290:1148–51.

    Article  PubMed  CAS  Google Scholar 

  • Chapin FS, BretHarte MS, Hobbie SE, Zhong HL. 1996. Plant functional types as predictors of transient responses of arctic vegetation to global change. J Veg Sci 7:347–58.

    Article  Google Scholar 

  • Chapin FS, Randerson JT, McGuire AD, Foley JA, Field CB. 2008. Changing feedbacks in the climate-biosphere system. Front Ecol Environ 6:313–20.

    Article  Google Scholar 

  • Collatz GJ, Berry JA, Clark JS. 1998. Effects of climate and atmospheric CO2 partial pressure on the global distribution of C-4 grasses: present, past, and future. Oecologia 114:441–54.

    Article  Google Scholar 

  • Collatz GJ, Ribas-Carbo M, Berry JA. 1992. Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Aust J Plant Physiol 19:519–38.

    Article  Google Scholar 

  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ. 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184.

    Article  PubMed  CAS  Google Scholar 

  • Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V, Foley JA, Friend AD, Kucharik C, Lomas MR, Ramankutty N, Sitch S, Smith B, White A, Young-Molling C. 2001. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biol 7:357–73.

    Article  Google Scholar 

  • Day TA, Ruhland CT, Xiong F. 2008. Warming increases aboveground plant biomass and C stocks in vascular-plant-dominated Antarctic tundra. Global Change Biol 14:1827–43.

    Article  Google Scholar 

  • Derner JD, Boutton TW, Briske DD. 2006. Grazing and ecosystem carbon storage in the North American Great Plains. Plant Soil 280:77–90.

    Article  CAS  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:79–90.

    Article  Google Scholar 

  • Field CB, Lobell DB, Peters HA, Chiariello NR. 2007. Feedbacks of terrestrial ecosystems to climate change. Annu Rev Env Resour 32:1–29.

    Article  Google Scholar 

  • Friedlingstein P, Cox P, Betts R, Bopp L, Von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler KG, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N. 2006. Climate-carbon cycle feedback analysis: results from the (CMIP)-M-4 model intercomparison. J Clim 19:3337–53.

    Article  Google Scholar 

  • Gustafsson C, Bostrom C. 2009. Effects of plant species richness and composition on epifaunal colonization in brackish water angiosperm communities. J Exp Mar Biol Ecol 382:8–17.

    Article  Google Scholar 

  • Harte J, Saleska S, Shih T. 2006. Shifts in plant dominance control carbon-cycle responses to experimental warming and widespread drought. Environ Res Lett 1:1–4.

    Article  Google Scholar 

  • Harte J, Torn MS, Chang FR, Feifarek B, Kinzig AP, Shaw R, Shen K. 1995. Global warming and soil microclimate—results from a meadow-warming experiment. Ecol Appl 5:132–50.

    Article  Google Scholar 

  • Heaton EA, Dohleman FG, Long SP. 2009. Seasonal nitrogen dynamics of Miscanthus x giganteus and Panicum virgatum. Global Change Biol Bioenergy 1:297–307.

    Article  CAS  Google Scholar 

  • Heimann M, Reichstein M. 2008. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451:289–92.

    Article  PubMed  CAS  Google Scholar 

  • Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setala H, Symstad AJ, Vandermeer J, Wardle DA. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35.

    Article  Google Scholar 

  • Hooper DU, Vitousek PM. 1997. The effects of plant composition and diversity on ecosystem processes. Science 277:1302–5.

    Article  CAS  Google Scholar 

  • Houghton RA, Hackler JL, Lawrence KT. 1999. The US carbon budget: contributions from land-use change. Science 285:574–8.

    Article  PubMed  CAS  Google Scholar 

  • Huxman TE, Cable JM, Ignace DD, Eilts JA, English NB, Weltzin J, Williams DG. 2004. Response of net ecosystem gas exchange to a simulated precipitation pulse in a semi-arid grassland: the role of native versus non-native grasses and soil texture. Oecologia 141:295–305.

    PubMed  Google Scholar 

  • Huxman TE, Turnipseed AA, Sparks JP, Harley PC, Monson RK. 2003. Temperature as a control over ecosystem CO2 fluxes in a high-elevation, subalpine forest. Oecologia 134:537–46.

    PubMed  CAS  Google Scholar 

  • Langley JA, Megonigal JP. 2010. Ecosystem response to elevated CO2 levels limited by nitrogen-induced plant species shift. Nature 466:96–9.

    Article  PubMed  CAS  Google Scholar 

  • Lin DL, Xia JY, Wan SQ. 2010. Climate warming and biomass accumulation of terrestrial plants: a meta-analysis. New Phytol 188:187–98.

    Article  PubMed  Google Scholar 

  • Lin XW, Zhang ZH, Wang SP, Hu YG, Xu GP, Luo CY, Chang XF, Duan JC, Lin QY, Xu BRBY, Wang YF, Zhao XQ, Xie ZB. 2011. Response of ecosystem respiration to warming and grazing during the growing seasons in the alpine meadow on the Tibetan plateau. Agr Forest Meteorol 151:792–802.

    Article  Google Scholar 

  • Lu M, Zhou X, Yang Q, Li H, Luo Y, Fang C, Chen J, Yang X, Li B. 2012. Responses of ecosystem carbon cycle to experimental warming: a meta-analysis. Ecology. doi:10.1890/12-0279.1.

  • Luo Y. 2007. Terrestrial carbon-cycle feedback to climate warming. Annu Rev Ecol Evol Syst 38:683–712.

    Article  Google Scholar 

  • Luo Y, Sherry R, Zhou X, Wan S. 2009. Terrestrial carbon-cycle feedback to climate warming: experimental evidence on plant regulation and impacts of biofuel feedstock harvest. Global Change Biol Bioenergy 1:62–74.

    Article  CAS  Google Scholar 

  • Luo Y, Wan S, Hui D, Wallace LL. 2001. Acclimatization of soil respiration to warming in a tall grass prairie. Nature 413:622–5.

    Article  PubMed  CAS  Google Scholar 

  • Meir P, Cox P, Grace J. 2006. The influence of terrestrial ecosystems on climate. Trends Ecol Evol 21:254–60.

    Article  PubMed  Google Scholar 

  • Morgan JA, LeCain DR, Pendall E, Blumenthal DM, Kimball BA, Carrillo Y, Williams DG, Heisler-White J, Dijkstra FA, West M. 2011. C(4) grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature 476:202–6.

    Article  PubMed  CAS  Google Scholar 

  • Nayyar H, Gupta D. 2006. Differential sensitivity of C-3 and C-4 plants to water deficit stress: association with oxidative stress and antioxidants. Environ Exp Bot 58:106–13.

    Article  CAS  Google Scholar 

  • Niu S, Jiang G, Li Y, Gao L, Liu M. 2003. Diurnal gas exchange and superior resources use efficiency of typical C-4 species in Hunshandak Sandland, China. Photosynthetica 41:221–6.

    Article  Google Scholar 

  • Niu S, Sherry R, Zhou H, Wan S, Luo Y. 2010a. Nitrogen regulation of the climate-carbon feedback: evidence from a long-term global change experiment. Ecology 91:3261–73.

    Article  PubMed  Google Scholar 

  • Niu S, Wu M, Han Y, Xia J, Zhang Z, Yang H, Wan S. 2010b. Nitrogen effects on net ecosystem carbon exchange in a temperate steppe. Global Change Biol 16:144–55.

    Article  Google Scholar 

  • Niu S, Yang H, Zhang Z, Wu M, Lu Q, Li L, Han X, Wan S. 2009. Non-additive effects of water and nitrogen addition on ecosystem carbon exchange in a temperate steppe. Ecosystems 12:915–26.

    Article  CAS  Google Scholar 

  • Niu SL, Luo YQ, Fei SF, Montagnani L, Bohrer G, Janssens IA, Gielen B, Rambal S, Moors E, Matteucci G. 2011. Seasonal hysteresis of net ecosystem exchange in response to temperature change: patterns and causes. Global Change Biol 17:3102–14.

    Article  Google Scholar 

  • Niu SL, Luo YQ, Fei SF, Yuan WP, Schimel D, Law BE, Ammann C, Arain MA, Arneth A, Aubinet M, Barr A, Beringer J, Bernhofer C, Black TA, Buchmann N, Cescatti A, Chen JQ, Davis KJ, Dellwik E, Desai AR, Etzold S, Francois L, Gianelle D, Gielen B, Goldstein A, Groenendijk M, Gu LH, Hanan N, Helfter C, Hirano T, Hollinger DY, Jones MB, Kiely G, Kolb TE, Kutsch WL, Lafleur P, Lawrence DM, Li LH, Lindroth A, Litvak M, Loustau D, Lund M, Marek M, Martin TA, Matteucci G, Migliavacca M, Montagnani L, Moors E, Munger JW, Noormets A, Oechel W, Olejnik J, Kyaw TPU, Pilegaard K, Rambal S, Raschi A, Scott RL, Seufert G, Spano D, Stoy P, Sutton MA, Varlagin A, Vesala T, Weng ES, Wohlfahrt G, Yang B, Zhang ZD, Zhou XH. 2012. Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms. New Phytol 194:775–83.

    Article  PubMed  Google Scholar 

  • Niu SL, Wu MY, Han Y, Xia JY, Li LH, Wan SQ. 2008. Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe. New Phytol 177:209–19.

    PubMed  CAS  Google Scholar 

  • Pearcy RW, Ehleringer J. 1984. Comparative ecophysiology of C-3 and C-4 plants. Plant Cell Environ 7:1–13.

    Article  CAS  Google Scholar 

  • Polley HW, Dugas WA, Mielnick PC, Johnson HB. 2007. C-3–C-4 composition and prior carbon dioxide treatment regulate the response of grassland carbon and water fluxes to carbon dioxide. Funct Ecol 21:11–18.

    Article  Google Scholar 

  • Reich PB, Tilman D, Naeem S, Ellsworth DS, Knops J, Craine J, Wedin D, Trost J. 2004. Species and functional group diversity independently influence biomass accumulation and its response to CO2 and N. Proc Natl Acad Sci USA 101:10101–6.

    Article  PubMed  CAS  Google Scholar 

  • Reich PB, Wright IJ, Lusk CH. 2007. Predicting leaf physiology from simple plant and climate attributes: a global GLOPNET analysis. Ecol Appl 17:1982–8.

    Article  PubMed  Google Scholar 

  • Rogiers N, Eugster W, Furger M, Siegwolf R. 2005. Effect of land management on ecosystem carbon fluxes at a subalpine grassland site in the Swiss Alps. Theor Appl Climatol 80:187–203.

    Article  Google Scholar 

  • Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J, Gcte-News. 2001. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562.

  • Saleska SR, Shaw MR, Fischer ML, Dunne JA, Still CJ, Holman ML, Harte J. 2002. Plant community composition mediates both large transient decline and predicted long-term recovery of soil carbon under climate warming. Global Biogeochem Cycles 16. doi:10.1029/2001GB001573.

  • Schuur EAG, Vogel JG, Crummer KG, Lee H, Sickman JO, Osterkamp TE. 2009. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459:556–9.

    Article  PubMed  CAS  Google Scholar 

  • Searchinger T, Heimlich R, Houghton RA, Dong FX, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu TH. 2008. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–40.

    Article  PubMed  CAS  Google Scholar 

  • Sitch S, Huntingford C, Gedney N, Levy PE, Lomas M, Piao SL, Betts R, Ciais P, Cox P, Friedlingstein P, Jones CD, Prentice IC, Woodward FI. 2008. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five dynamic global vegetation models (DGVMs). Global Change Biol 14:2015–39.

    Article  Google Scholar 

  • Suyker AE, Verma SB, Burba GG. 2003. Interannual variability in net CO2 exchange of a native tallgrass prairie. Global Change Biol 9:255–65.

    Article  Google Scholar 

  • Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E. 1997. The influence of functional diversity and composition on ecosystem processes. Science 277:1300–2.

    Article  CAS  Google Scholar 

  • Wan S, Hui D, Wallace L, Luo Y. 2005. Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Global Biogeochem Cycles 19. doi:10.1029/2004GB002315.

  • Wan S, Luo Y, Wallace LL. 2002. Changes in microclimate induced by experimental warming and clipping in tallgrass prairie. Global Change Biol 8:754–68.

    Article  Google Scholar 

  • Welker JM, Fahnestock JT, Henry GHR, O’Dea KW, Chimner RA. 2004. CO2 exchange in three Canadian high Arctic ecosystems: response to long-term experimental warming. Global Change Biol 10:1981–95.

    Article  Google Scholar 

  • White TA, Campbell BD, Kemp PD, Hunt CL. 2000. Sensitivity of three grassland communities to simulated extreme temperature and rainfall events. Global Change Biol 6:671–84.

    Article  Google Scholar 

  • Wittmer MHOM, Auerswald K, Bai Y, Schaufele R, Schnyder H. 2010. Changes in the abundance of C3/C4 species of Inner Mongolia grassland: evidence from isotopic composition of soil and vegetation. Global Change Biol 16:605–16.

    Article  Google Scholar 

  • Wu ZT, Dijkstra P, Koch GW, Penuelas J, Hungate BA. 2011. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Global Change Biol 17:927–42.

    Article  Google Scholar 

  • Yuan W, Luo Y, Liang S, Yu G, Niu S, Stoy P, Chen J, Desai AR, Lindroth A, Gough CM, Ceulemans R, Arain A, Bernhofer C, Cook B, Cook DR, Dragoni D, Gielen B, Janssens IA, Longdoz B, Liu H, Lund M, Matteucci G, Moors E, Scott RL, Seufert G, Varner R. 2011. Thermal adaptation of net ecosystem exchange. Biogeosciences 8:1453–63.

    Article  Google Scholar 

  • Zhao W, Chen S, Lin G. 2008. Compensatory growth responses to clipping defoliation in Leymus chinensis (Poaceae) under nutrient addition and water deficiency conditions. Plant Ecol 196:85–99.

    Article  Google Scholar 

  • Zhou X, Liu X, Wallace LL, Luo Y. 2007. Photosynthetic and respiratory acclimation to experimental warming for four species in a tallgrass prairie ecosystem. J Integr Plant Biol 49:270–81.

    Article  CAS  Google Scholar 

  • Zhou X, Sherry RA, An Y, Wallace LL, Luo Y. 2006. Main and interactive effects of warming, clipping, and doubled precipitation on soil CO2 efflux in a grassland ecosystem. Global Biogeochem Cycles 20:GB1003. doi:1010.1029/2005GB002526.

Download references

Acknowledgments

This study was financially supported by the US National Science Foundation (NSF) Grant DEB 0743778, DEB 0840964, DBI 0850290, EPS 0919466, and by the United States Department of Energy, Biological Systems Research on the Role of Microbial Communities in Carbon Cycling Program (DE-SC0004601) and Oklahoma Bioenergy Center (OBC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuli Niu.

Additional information

Author Contributions

SN analyzed data and wrote the article. SN, RS, and XZ conducted the measurements. YL and SN designed the study.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 168 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niu, S., Sherry, R.A., Zhou, X. et al. Ecosystem Carbon Fluxes in Response to Warming and Clipping in a Tallgrass Prairie. Ecosystems 16, 948–961 (2013). https://doi.org/10.1007/s10021-013-9661-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-013-9661-4

Keywords

Navigation