Skip to main content

Invariance Conditions for Nonlinear Dynamical Systems

  • Chapter
  • First Online:
Optimization and Its Applications in Control and Data Sciences

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 115))

Abstract

Recently, Horváth et al. (Appl Math Comput, submitted) proposed a novel unified approach to study, i.e., invariance conditions, sufficient and necessary conditions, under which some convex sets are invariant sets for linear dynamical systems. In this paper, by utilizing analogous methodology, we generalize the results for nonlinear dynamical systems. First, the Theorems of Alternatives, i.e., the nonlinear Farkas lemma and the S-lemma, together with Nagumo’s Theorem are utilized to derive invariance conditions for discrete and continuous systems. Only standard assumptions are needed to establish invariance of broadly used convex sets, including polyhedral and ellipsoidal sets. Second, we establish an optimization framework to computationally verify the derived invariance conditions. Finally, we derive analogous invariance conditions without any conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the sake of simplicity, we assume that there exists an interior point in the polyhedron.

  2. 2.

    The Slater condition means that there exists a \(\hat{y} \in \mathbb{R}^{n}\), such that \(g_{j}(\hat{y}) \leq 0\) for all j when g j (x) is linear, and \(g_{j}(\hat{y}) <0\) for all j when g j (x) is nonlinear.

  3. 3.

    The tangent cone \(\mathcal{T}_{\mathcal{S}}(x)\) is denoted as follows: \(\mathcal{T}_{\mathcal{S}}(x) =\{ y \in \mathbb{R}^{n}\;\vert \;\mathop{\lim \inf }\limits_{t \rightarrow 0_{+}}\frac{\text{dist}(x+ty,\mathcal{S})} {t} = 0\},\) where \(\text{dist}(x,\mathcal{S}) =\inf _{s\in \mathcal{S}}\|x - s\|.\)

  4. 4.

    Here H ≥ 0 means that all the entries of H are nonnegative.

  5. 5.

    The example uses the following theorem: If \(\tilde{g}(x)\) is a nondecreasing function, and \(\tilde{f}(x)\) is a convex function, then \(\tilde{g}(\tilde{f}(x))\) is a convex function.

  6. 6.

    It is not necessary to assume that the two sets are convex sets.

References

  1. Aliluiko, A.M., Mazko, O.H.: Invariant cones and stability of linear dynamical systems. Ukr. Math. J. 58 (11), 1635–1655 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andersen, E.D.: MOSEK. https://www.mosek.com/ November (2015)

  3. Birkhoff, G.: Linear transformations with invariant cones. Am. Math. Mon. 74 (3), 274–276 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bitsoris, G.: On the positive invariance of polyhedral sets for discrete-time systems. Syst. Control Lett. 11 (3), 243–248 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bitsoris, G.: Positively invariant polyhedral sets of discrete-time linear systems. Int. J. Control. 47 (6), 1713–1726 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blanchini, F.: Set invariance in control. Automatica 35 (11), 1747–1767 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM Studies in Applied Mathematics, SIAM, Philadelphia (1994)

    Book  MATH  Google Scholar 

  8. Fiacchini, M., Alamo, T., Camacho, E.F.: On the computation of convex robust control invariant sets for nonlinear systems. Automatica 46 (8), 1334–1338 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Harris, J.: Algebraic Geometry: A First Course. Springer Science, New York (1992)

    Book  MATH  Google Scholar 

  10. Horváth, Z.: Positively invariant cones of dynamical systems under Runge-Kutta and Rosenbrock-type discretization. Proc. Appl. Math. Mech. 4 688–689 (2004)

    Article  Google Scholar 

  11. Horváth, Z., Song, Y., Terlaky, T.: Invariance preserving discretizations of dynamical systems. J. Optim. Theory Appl. (2015, submitted)

    Google Scholar 

  12. Horváth, Z., Song, Y., Terlaky, T.: A novel unified approach to invariance in dynamical systems. Appl. Math. Comput. (2015, submitted)

    Google Scholar 

  13. Horváth, Z., Song, Y., Terlaky, T.: Steplength thresholds for invariance preserving of discretization methods of dynamical systems on a polyhedron. Discr. Cont. Dynamical System - A 35 (7), 2997–2013 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kanatnikov, A.N., Krishchenko, A.P.: Localization of compact invariant sets of nonlinear systems. Int. J. Bifurcation Chaos 21, 2057–2065 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kerrigan, E.C., Maciejowski, J.M.: Invariant sets for constrained nonlinear discrete-time systems with application to feasibility in model predictive control. In: Proceedings of the 39th IEEE Conference on Decision and Control (2000)

    Google Scholar 

  16. Krein, M.G., Rutman, M.A.: Linear operators leaving invariant a cone in a Banach space. Uspehi Matem. Nauk (N. S.), 31 (23), 1–95 (1948) (in Russian). Am. Math. Soc. Transl. 26, 128 pp. (1950)

    Google Scholar 

  17. Luenberger, D.: Introduction to Dynamic Systems: Theory, Models, and Applications, 1st edn. Wiley, New York (1979)

    MATH  Google Scholar 

  18. Nagumo, M.: Über die Lage der Integralkurven gewöhnlicher Differentialgleichungen. Proc. Phys.-Math. Soc. Jpn. 24 (3), 551–559 (1942)

    MathSciNet  MATH  Google Scholar 

  19. Pintér, J.D.: LGO. http://www.pinterconsulting.com/l_s_d.html, November (2015)

  20. Pólik, I., Terlaky, T.: A survey of the S-lemma. SIAM Rev. 49 (3), 371–418 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pólik, I., Terlaky, T.: Interior point methods for nonlinear optimization. In: Di Pillo, G., Schoen, F. (ed.) Nonlinear Optimization, Springer Lecture Notes in Mathematics, Chap. 4, pp. 215–27. Springer Science, Heidelberg (2010)

    Google Scholar 

  22. Roos, C., Terlaky, T., Vial, J.-P.: Interior Point Methods for Linear Optimization. Springer Science, Heidelberg (2006)

    MATH  Google Scholar 

  23. Schneider, H., Vidyasagar, M.: Cross-positive matrices. SIAM J. Numer. Anal. 7 (4), 508–519 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shen, J.: Positive invariance of constrained affine dynamics and its applications to hybrid systems and safety verification. IEEE Trans. Autom. Control 57 (1), 3–18 (2012)

    Article  MathSciNet  Google Scholar 

  25. Stern, R., Wolkowicz, H.: Exponential nonnegativity on the ice cream cone. SIAM J. Matrix Anal. Appl. 12 (1), 160–165 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  26. Teschl, G.: Ordinary Differential Equations and Dynamical Systems. American Mathematical Society, Providence (2012)

    Book  MATH  Google Scholar 

  27. Tiwari, A., Fung, J., Bhattacharya, R., Murray, R.M.: Polyhedral cone invariance applied to rendezvous of multiple agents. In: 43th IEEE Conference on Decision and Control, vol. 1, pp. 165–170 (2004)

    Google Scholar 

  28. Waechter, A.: IPOPT. https://projects.coin-or.org/Ipopt, November (2015)

  29. Wolfe, P.: A duality theorem for non-linear programming. Quart. Appl. Math. 19, 239–244 (1961)

    MathSciNet  MATH  Google Scholar 

  30. Yakubovich, V.: S-procedure in nonlinear control theory. Vestn. Leningr. Univ. 1, 62–77 (1971)

    MathSciNet  MATH  Google Scholar 

  31. Zhou, K., Doyle, J., Glover, K.: Robust and Optimal Control, 1st edn. Prentice Hall, Upper Saddle River (1995)

    MATH  Google Scholar 

Download references

Acknowledgements

This research is supported by a Start-up grant of Lehigh University, and by TAMOP-4.2.2.A-11/1KONV-2012-0012: Basic research for the development of hybrid and electric vehicles. The TAMOP Project is supported by the European Union and co-financed by the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Terlaky .

Editor information

Editors and Affiliations

Appendix

Appendix

Theorem 15 ([5, 12]).

Let P ={ x | Gx ≤ b} be a polyhedron, where \(G \in \mathbb{R}^{m\times n}\) and \(b \in \mathbb{R}^{m}.\) Let the discrete system, given as in (1) , be linear, i.e., f(x) = Ax. Then P is an invariant set for the discrete system (1) if and only if there exists a matrix H ≥ 0, such that HG = GA and Hb ≤ b.

Proof.

We have that P is an invariant set for the linear system if and only if the optimal objective values of the following m linear optimization problems are all nonnegative:

$$\displaystyle{ \mathop{\mathrm{min}}\limits \{b_{i} - G_{i}^{T}Ax\,\vert \,Gx \leq b\}\ \ \ i \in \mathrm{ I}(m). }$$
(33)

Problems (33) are equivalent to

$$\displaystyle{ -b_{i} +\mathop{ \mathrm{max}}\limits \{G_{i}^{T}Ax\,\vert \,Gx \leq b\}\ \ \ i \in \mathrm{ I}(m). }$$
(34)

The duals of these linear optimization problems presented in (34) are for all i ∈ I(m)

$$\displaystyle{ \begin{array}{rl} - b_{i} +\mathop{ \mathrm{min}}\limits &\ b^{T}H_{i} \\ \text{s.t. }&G^{T}H_{i} = A^{T}G_{i} \\ &\ \ H_{i} \geq 0.\end{array} }$$
(35)

Due to the Strong Duality Theorem of linear optimization, see, e.g., [22], the primal and dual objective function values are equal at optimal solutions, thus G i T Ax = b T H i . As the optimal value of (33) is nonnegative for all i ∈ I(m), we have b i b T H i  ≥ 0. Thus b ≥ Hb. The proof is complete.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Horváth, Z., Song, Y., Terlaky, T. (2016). Invariance Conditions for Nonlinear Dynamical Systems. In: Goldengorin, B. (eds) Optimization and Its Applications in Control and Data Sciences. Springer Optimization and Its Applications, vol 115. Springer, Cham. https://doi.org/10.1007/978-3-319-42056-1_8

Download citation

Publish with us

Policies and ethics