Skip to main content

Advertisement

Log in

Research progress of nano-silicon-based materials and silicon-carbon composite anode materials for lithium-ion batteries

  • Review Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

A Correction to this article was published on 02 April 2022

This article has been updated

Abstract

In order to solve the energy crisis, energy storage technology needs to be continuously developed. As an energy storage device, the battery is more widely used. At present, most electric vehicles are driven by lithium-ion batteries, so higher requirements are put forward for the capacity and cycle life of lithium-ion batteries. Silicon with a capacity of 3579 mAh·g−1 is expected to replace graphite anode, but its large-scale application is limited by large volume expansion and unstable solid-electrolyte interface. At present, the modification methods of silicon mainly include nanocrystallization, silicon-carbon composite, and other methods. Nanocrystallization mainly reduces the mechanical stress of materials, and silicon-carbon composites can improve conductivity and alleviate volume expansion. This paper summarizes the current research and finally puts forward that only by optimizing the process flow and developing more environmentally friendly synthesis methods can we promote the commercialization of silicon anode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. Masias A, Marcicki J, Paxton WA (2021) Opportunities and challenges of lithium ion batteries in automotive applications. ACS Energy Lett 6(2):621–630

    Article  CAS  Google Scholar 

  2. Ryu HH, Sun HH, Myung ST et al (2021) Reducing cobalt from lithium-ion batteries for the electric vehicle era. Energy Environ Sci 14(2):844–852

    Article  CAS  Google Scholar 

  3. Schmuch R, Wagner R, Hörpel G et al (2018) Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat Energy 3(4):267–278

    Article  CAS  Google Scholar 

  4. Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657

    Article  CAS  PubMed  Google Scholar 

  5. Ahmadi L, Young SB, Fowler M et al (2017) A cascaded life cycle: reuse of electric vehicle lithium-ion battery packs in energy storage systems. Int J Life Cycle Assess 22(1):111–124

    Article  CAS  Google Scholar 

  6. Cho Y, Lee S, Lee Y et al (2011) Spinel-layered core-shell cathode materials for Li-ion batteries. Adv Energy Mater 1(5):821–828

    Article  CAS  Google Scholar 

  7. Li J, Zhou Z, Luo Z et al (2021) Microcrack generation and modification of Ni-rich cathodes for Li-ion batteries: a review. Sustain Mater Technol e00305

  8. Zhou Z, Luo Z, He Z et al (2020) A novel hollow porous structure designed for Na0. 44Mn2/3Co1/6Ni1/6O2 cathode material of sodium-ion batteries. J Power Sources 479:228788

  9. Lu S, Wang Z, Zhang X et al (2020) In situ-formed hollow cobalt sulfide wrapped by reduced graphene oxide as an anode for high-performance lithium-ion batteries. ACS Appl Mater Interfaces 12(2):2671–2678

    Article  CAS  PubMed  Google Scholar 

  10. Wang R, Sun Y, Yang K et al (2020) One-time sintering process to modify xLi2MnO3·(-x)LiMO2 hollow architecture and studying their enhanced electrochemical performances. J Energy Chem 50:271–279

    Article  Google Scholar 

  11. Wu H, Cui Y (2012) Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7(5):414–429

    Article  CAS  Google Scholar 

  12. Obrovac MN, Chevrier VL (2014) Alloy negative electrodes for Li-ion batteries. Chem Rev 114(23):11444–11502

    Article  CAS  PubMed  Google Scholar 

  13. Liang B, Liu Y, Xu Y (2014) Silicon-based materials as high capacity anodes for next generation lithium ion batteries. J Power sources 267:469–490

    Article  CAS  Google Scholar 

  14. Li J, Dahn JR (2007) An in situ X-ray diffraction study of the reaction of Li with crystalline Si. J Electrochem Soc 154(3):A156

    Article  CAS  Google Scholar 

  15. Liu XH, Huang JY (2011) In situ TEM electrochemistry of anode materials in lithium ion batteries. Energy Environ Sci 4(10):3844–3860

    Article  CAS  Google Scholar 

  16. Sharma RA, Seefurth RN (1976) Thermodynamic properties of the lithium-silicon system. J Electrochem Soc 123(12):1763–1768

    Article  CAS  Google Scholar 

  17. Feng Z, Peng W, Wang Z et al (2021) Review of silicon-based alloys for lithium-ion battery anodes. Int J Miner Metall Mater 28(10):1549–1564

    Article  CAS  Google Scholar 

  18. Kasavajjula U, Wang C, Appleby AJ (2007) Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sources 163(2):1003–1039

    Article  CAS  Google Scholar 

  19. Zhang Y, Zhang XG, Zhang HL et al (2006) Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries. Electrochim Acta 51(23):4994–5000

    Article  CAS  Google Scholar 

  20. Dey AN, Sullivan BP (1970) The electrochemical decomposition of propylene carbonate on graphite. J Electrochem Soc 117(2):222

    Article  CAS  Google Scholar 

  21. Peled E (1979) The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems-the solid electrolyte interphase model. J Electrochem Soc 126(12):2047

    Article  CAS  Google Scholar 

  22. Peled E, Golodnitsky D, Ardel G (1997) Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J Electrochem Soc 144(8):L208

    Article  CAS  Google Scholar 

  23. Shi S, Lu P, Liu Z et al (2012) Direct calculation of Li-ion transport in the solid electrolyte interphase. J Amer Chem Soc 134(37):15476–15487

    Article  CAS  Google Scholar 

  24. Wu X, Pan K, Jia M et al (2019) Electrolyte for lithium protection: from liquid to solid. Green Energy Environ 4(4):360–374

    Article  Google Scholar 

  25. Liu XH, Liu Y, Kushima A et al (2012) In situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures. Adv Energy Mater 2(7):722–741

    Article  CAS  Google Scholar 

  26. Dupré N, Moreau P, De Vito E et al (2016) Multiprobe study of the solid electrolyte interphase on silicon-based electrodes in full-cell configuration. Chem Mater 28(8):2557–2572

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Luo F, Liu B, Zheng J et al (2015) Nano-silicon/carbon composite anode materials towards practical application for next generation Li-ion batteries. J Electrochem Soc 162(14):A2509

    Article  CAS  Google Scholar 

  28. Xu C, Lindgren F, Philippe B et al (2015) Improved performance of the silicon anode for Li-ion batteries: understanding the surface modification mechanism of fluoroethylene carbonate as an effective electrolyte additive. Chem Mater 27(7):2591–2599

    Article  CAS  Google Scholar 

  29. Wu H, Chan G, Choi JW et al (2012) Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control. Nat Nanotechnol 7(5):310–315

    Article  CAS  PubMed  Google Scholar 

  30. Du FH, Wang KX, Chen JS (2016) Strategies to succeed in improving the lithium-ion storage properties of silicon nanomaterials. J Mater Chem A 4(1):32–50

    Article  CAS  Google Scholar 

  31. Liu W, Xu H, Qin H et al (2020) Rapid coating of asphalt to prepare carbon-encapsulated composites of nano-silicon and graphite for lithium battery anodes. J Mater Sci 55(10):4382–4394

    Article  CAS  Google Scholar 

  32. Qu X, Zhang X, Wu Y et al (2019) An eggshell-structured N-doped silicon composite anode with high anti-pulverization and favorable electronic conductivity. J Power Sources 443: 227265

  33. Liu R, Shen C, Dong Y et al (2018) Sandwich-like CNTs/Si/C nanotubes as high performance anode materials for lithium-ion batteries. J Mater Chem A 6(30):14797–14804

    Article  CAS  Google Scholar 

  34. Song T, Xia J, Lee JH et al (2010) Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Lett 10(5):1710–1716

    Article  CAS  PubMed  Google Scholar 

  35. Wen Z, Lu G, Mao S et al (2013) Silicon nanotube anode for lithium-ion batteries. Electrochem Commun 29:67–70

    Article  CAS  Google Scholar 

  36. Peng K, Jie J, Zhang W et al (2008) Silicon nanowires for rechargeable lithium-ion battery anodes. Appl Phys Lett 93(3): 033105

  37. Imtiaz S, Amiinu I S, Storan D et al (2021) Dense silicon nanowire networks grown on a stainless steel fiber cloth: a flexible and robust anode for lithium‐ion batteries. Adv Mater 2105917.

  38. Ruffo R, Hong SS, Chan CK et al (2009) Impedance analysis of silicon nanowire lithium ion battery anodes. J Phys Chem C 113(26):11390–11398

    Article  CAS  Google Scholar 

  39. Prosini PP, Cento C, Rufoloni A et al (2015) A lithium-ion battery based on LiFePO4 and silicon nanowires. Solid State Ionics 269:93–97

    Article  CAS  Google Scholar 

  40. Farooq U, Choi JH, Kim D et al (2014) Electrically exploded silicon/carbon nanocomposite as anode material for lithium-ion batteries. J Nanosci Nanotechnol 14(12):9340–9345

    Article  CAS  PubMed  Google Scholar 

  41. Lu Z, Zhu J, Sim D et al (2011) Synthesis of ultrathin silicon nanosheets by using graphene oxide as template. Chem Mater 23(24):5293–5295

    Article  CAS  Google Scholar 

  42. Biserni E, Xie M, Brescia R et al (2015) Silicon algae with carbon topping as thin-film anodes for lithium-ion microbatteries by a two-step facile method. J Power Sources 274:252–259

    Article  CAS  Google Scholar 

  43. Demirkan MT, Trahey L, Karabacak T (2015) Cycling performance of density modulated multilayer silicon thin film anodes in Li-ion batteries. J Power Sources 273:52–61

    Article  CAS  Google Scholar 

  44. Zhao Y, Liu X, Li H et al (2012) Hierarchical micro/nano porous silicon Li-ion battery anodes. Chem Commun 48(42):5079–5081

    Article  CAS  Google Scholar 

  45. Cheng H, Xiao R, Bian H et al (2014) Periodic porous silicon thin films with interconnected channels as durable anode materials for lithium ion batteries. Mater Chem Phys 144(1–2):25–30

    Article  CAS  Google Scholar 

  46. Hwang TH, Lee YM, Kong BS et al (2012) Electrospun core–shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. Nano Lett 12(2):802–807

    Article  CAS  PubMed  Google Scholar 

  47. Liao L, Ma T, Xiao Y et al (2021) Enhanced reversibility and cyclic stability of biomass-derived silicon/carbon anode material for lithium-ion battery. J Alloys Compd 873:159700

  48. Liu XH, Zhong L, Huang S et al (2012) Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6(2):1522–1531

    Article  CAS  PubMed  Google Scholar 

  49. Sun L, Wang F, Su T et al (2017) Step-by-step assembly preparation of core–shell Si-mesoporous TiO2 composite nanospheres with enhanced lithium-storage properties. Dalton Trans 46(35):11542–11546

    Article  CAS  PubMed  Google Scholar 

  50. Lu B, Ma B, Deng X et al (2018) Dual stabilized architecture of hollow Si@ TiO2@ C nanospheres as anode of high-performance Li-ion battery. Chem Eng J 351:269–279

    Article  CAS  Google Scholar 

  51. Yao Y, McDowell MT, Ryu I et al (2011) Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett 11(7):2949–2954

    Article  CAS  PubMed  Google Scholar 

  52. Xiao Q, Gu M, Yang H et al (2015) Inward lithium-ion breathing of hierarchically porous silicon anodes. Nat Commun 6(1):1–8

    Google Scholar 

  53. Chan CK, Peng H, Liu G et al (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3(1):31–35

    Article  CAS  PubMed  Google Scholar 

  54. Kim H, Seo M, Park MH et al (2010) A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew Chem Int Ed 49(12):2146–2149

    Article  CAS  Google Scholar 

  55. Al-Taay HF, Mahdi MA, Parlevliet D et al (2014) Growth and characterization of silicon nanowires catalyzed by Zn metal via pulsed plasma-enhanced chemical vapor deposition. Superlattices Microstruct 68:90–100

    Article  CAS  Google Scholar 

  56. Shao M, Ma DDD, Lee ST (2010) Silicon nanowires–synthesis, properties, and applications. Eur J Inorg Chem 27:4264–4278

    Article  CAS  Google Scholar 

  57. Park MH, Kim MG, Joo J et al (2009) Silicon nanotube battery anodes. Nano Lett 9(11):3844–3847

    Article  CAS  PubMed  Google Scholar 

  58. Maranchi JP, Hepp AF, Kumta PN (2003) High capacity, reversible silicon thin-film anodes for lithium-ion batteries. Electrochem Solid State Lett 6(9):A198

    Article  CAS  Google Scholar 

  59. Bourderau S, Brousse T, Schleich DM (1999) Amorphous silicon as a possible anode material for Li-ion batteries. J Power Sources 81:233–236

    Article  Google Scholar 

  60. Li J, Dozier AK, Li Y et al (2011) Crack pattern formation in thin film lithium-ion battery electrodes. J Electrochem Soc 158(6):A689

    Article  CAS  Google Scholar 

  61. Yu C, Li X, Ma T et al (2012) Silicon thin films as anodes for high-performance lithium-ion batteries with effective stress relaxation. Adv Energy Mater 2(1):68–73

    Article  CAS  Google Scholar 

  62. Uhlir A Jr (1956) Electrolytic shaping of germanium and silicon. Bell Syst Tech J 35(2):333–347

    Article  CAS  Google Scholar 

  63. Jiang Z, Li C, Hao S et al (2014) An easy way for preparing high performance porous silicon powder by acid etching Al–Si alloy powder for lithium ion battery. Electrochim Acta 115:393–398

    Article  CAS  Google Scholar 

  64. Li X, Gu M, Hu S et al (2014) Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nat Commun 5(1):1–7

    Google Scholar 

  65. Yu Y, Gu L, Zhu C et al (2010) Reversible storage of lithium in silver-coated three-dimensional macroporous silicon. Adv Mater 22(20):2247–2250

    Article  CAS  PubMed  Google Scholar 

  66. Ge M, Lu Y, Ercius P et al (2014) Large-scale fabrication, 3D tomography, and lithium-ion battery application of porous silicon. Nano Lett 14(1):261–268

    Article  CAS  PubMed  Google Scholar 

  67. Liu N, Lu Z, Zhao J et al (2014) A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat Nanotechnol 9(3):187–192

    Article  CAS  PubMed  Google Scholar 

  68. Li Y, Yan K, Lee HW et al (2016) Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat Energy 1(2):1–9

    Google Scholar 

  69. Wang J, Liao L, Li Y et al (2018) Shell-protective secondary silicon nanostructures as pressure-resistant high-volumetric-capacity anodes for lithium-ion batteries. Nano Lett 18(11):7060–7065

    Article  CAS  PubMed  Google Scholar 

  70. Zhang X, Kong D, Li X et al (2019) Dimensionally designed carbon–silicon hybrids for lithium storage. Adv Funct Mater 29(2):1806061

    Article  CAS  Google Scholar 

  71. Niu P, Asturias-Arribas L, Gich M et al (2016) Electrochemically active thin carbon films with enhanced adhesion to silicon substrates. ACS Appl Mater Interfaces 8(45):31092–31099

    Article  CAS  PubMed  Google Scholar 

  72. Wu J, Cao Y, Zhao H et al (2019) The critical role of carbon in marrying silicon and graphite anodes for high-energy lithium-ion batteries. Carbon Energy 1(1):57–76

    Article  CAS  Google Scholar 

  73. Zhao L, Bennett JC, George A et al (2019) SiC-free carbon–silicon alloys prepared by delithiation as lithium-ion battery negative electrodes. Chem Mater 31(11):3883–3890

    Article  CAS  Google Scholar 

  74. Yi Z, Qian Y, Cao C et al (2019) Porous Si/C microspheres decorated with stable outer carbon interphase and inner interpenetrated Si@ C channels for enhanced lithium storage. Carbon 149:664–671

    Article  CAS  Google Scholar 

  75. Luo W, Wang Y, Chou S et al (2016) Critical thickness of phenolic resin-based carbon interfacial layer for improving long cycling stability of silicon nanoparticle anodes. Nano Energy 27:255–264

    Article  CAS  Google Scholar 

  76. Ko M, Chae S, Ma J et al (2016) Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries. Nat Energy 1(9):1–8

    Article  CAS  Google Scholar 

  77. Zhou R, Guo H, Yang Y et al (2016) N-doped carbon layer derived from polydopamine to improve the electrochemical performance of spray-dried Si/graphite composite anode material for lithium ion batteries. J Alloys Compd 689:130–137

    Article  CAS  Google Scholar 

  78. Yang W, Ying H, Zhang S et al (2020) Electrochemical performance enhancement of porous Si lithium-ion battery anode by integrating with optimized carbonaceous materials. Electrochim Acta 337:135687

  79. Su J, Zhang C, Chen X et al (2018) Carbon-shell-constrained silicon cluster derived from Al-Si alloy as long-cycling life lithium ion batteries anode. J Power Sources 381:66–71

    Article  CAS  Google Scholar 

  80. Hwa Y, Kim WS, Hong SH et al (2012) High capacity and rate capability of core–shell structured nano-Si/C anode for Li-ion batteries. Electrochim Acta 71:201–205

    Article  CAS  Google Scholar 

  81. Park S W, Ha J H, Cho B W et al (2021) Designing of high capacity Si nanosheets anode electrodes for Lithium batteries. Surf Coat Technol 127358

  82. Tang Y, Yuan S, Guo Y et al (2016) Highly ordered mesoporous Si/C nanocomposite as high performance anode material for Li-ion batteries. Electrochim Acta 200:182–188

    Article  CAS  Google Scholar 

  83. Nie P, Liu X, Fu R et al (2017) Mesoporous silicon anodes by using polybenzimidazole derived pyrrolic N-enriched carbon toward high-energy Li-ion batteries. ACS Energy Lett 2(6):1279–1287

    Article  CAS  Google Scholar 

  84. Zhao Y, Wang J, He Q et al (2019) Li-ions transport promoting and highly stable solid–electrolyte interface on Si in multilayer Si/C through thickness control. ACS Nano 13(5):5602–5610

    Article  CAS  PubMed  Google Scholar 

  85. Wu ZS, Ren WC, Xu L et al (2011) Doped graphene sheets as anode materials with super high rate and large capacity for lithium ion batteries. ACS Nano 5(7):5463–5471

    Article  CAS  PubMed  Google Scholar 

  86. Ma C, Ma C, Wang J et al (2014) Exfoliated graphite as a flexible and conductive support for Si-based Li-ion battery anodes. Carbon 72:38–46

    Article  CAS  Google Scholar 

  87. Jamaluddin A, Umesh B, Chen F et al (2020) Facile synthesis of core–shell structured Si@ graphene balls as a high-performance anode for lithium-ion batteries. Nanoscale 12(17):9616–9627

    Article  CAS  PubMed  Google Scholar 

  88. Lee JK, Smith KB, Hayner CM et al (2010) Silicon nanoparticles–graphene paper composites for Li ion battery anodes. Chem Commun 46(12):2025–2027

    Article  CAS  Google Scholar 

  89. Shao F, Li H, Yao L et al (2021) Binder-free, flexible, and self-standing non-woven fabric anodes based on graphene/Si hybrid fibers for high-performance Li-ion batteries. ACS Appl Mater Interfaces

  90. Wang MS, Wang GL, Wang S et al (2019) In situ catalytic growth 3D multi-layers graphene sheets coated nano-silicon anode for high performance lithium-ion batteries. Chem Eng J 356:895–903

    Article  CAS  Google Scholar 

  91. Hou C, Yang K, Tang F et al (2019) Anode material with Li-Si nano-domains in three-dimensional carbon network. Prog Nat Sci Mater Int 29(3):310–315

    Article  CAS  Google Scholar 

  92. Wu Y, Huang X, Huang L et al (2018) Self-healing liquid metal and Si composite as a high-performance anode for lithium-ion batteries. ACS Appl Energy Mater 1(4):1395–1399

    Article  CAS  Google Scholar 

  93. Huang X, Sui X, Yang H et al (2018) HF-free synthesis of Si/C yolk/shell anodes for lithium-ion batteries. J Mater Chem A 6(6):2593–2599

    Article  CAS  Google Scholar 

  94. Xu R, Wang G, Zhou T et al (2017) Rational design of Si@ carbon with robust hierarchically porous custard-apple-like structure to boost lithium storage. Nano Energy 39:253–261

    Article  CAS  Google Scholar 

  95. Liu N, Wu H, McDowell MT et al (2012) A yolk-shell design for stabilized and scalable li-ion battery alloy anodes. Nano Lett 12(6):3315–3321

    Article  CAS  PubMed  Google Scholar 

  96. Xiao Z, Xia N, Song L et al (2018) Synthesis of yolk–shell-structured Si@C nanocomposite anode material for lithium-ion battery. J Electron Mater 47(10):6311–6318

    Article  CAS  Google Scholar 

  97. Yang J, Wang YX, Chou SL et al (2015) Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries. Nano Energy 18:133–142

    Article  CAS  Google Scholar 

  98. Shi J, Jiang X, Sun J et al (2021) Recycled silicon-based anodes with three-dimensional hierarchical porous carbon framework synthesized by a self-assembly CaCO3 template method for lithium ion battery. J Alloys Compd 858:157703

  99. Zhang Y, Hu G, Yu Q et al (2020) Polydopamine sacrificial layer mediated SiO x/C@ C yolk@ shell structure for durable lithium storage. Mater Chem Front 4(6):1656–1663

    Article  CAS  Google Scholar 

  100. Wang J, Bao W, Ma L et al (2015) Scalable preparation of ternary hierarchical silicon oxide-nickel-graphite composites for lithium-ion batteries. Chemsuschem 8(23):4073–4080

    Article  CAS  PubMed  Google Scholar 

  101. Qian L, Lan JL, Xue M et al (2017) Two-step ball-milling synthesis of a Si/SiOx/C composite electrode for lithium ion batteries with excellent long-term cycling stability. RSC Adv 7(58):36697–36704

    Article  CAS  Google Scholar 

  102. Abel PR, Chockla AM, Lin YM et al (2013) Nanostructured Si(1–x)Gex for tunable thin film lithium-ion battery anodes. ACS Nano 7(3):2249–2257

    Article  CAS  PubMed  Google Scholar 

  103. Chen Z, Wang X, Jian T et al (2020) One-step mild fabrication of branch-like multimodal porous Si/Zn composites as high performance anodes for Li-ion batteries. Solid State Ion 354:115406

  104. Kim HJ, Choi S, Lee SJ et al (2016) Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells. Nano Lett 16(1):282–288

    Article  CAS  PubMed  Google Scholar 

  105. Wang Z, Fu Y, Zhang Z et al (2014) Application of stabilized lithium metal powder (SLMP®) in graphite anode-a high efficient prelithiation method for lithium-ion batteries. J Power Sources 260:57–61

    Article  CAS  Google Scholar 

  106. Gendensuren B, He C, Oh ES (2020) Preparation of pectin-based dual-crosslinked network as a binder for high performance Si/C anode for LIBs. Korean J Chem Eng 37(2):366–373

    Article  CAS  Google Scholar 

  107. Cui J, Cui Y, Li S et al (2016) Microsized porous SiOx@C composites synthesized through aluminothermic reduction from rice husks and used as anode for lithium-ion batteries. ACS Appl Mater Interfaces 8(44):30239–30247

    Article  CAS  PubMed  Google Scholar 

  108. Yasuda K, Kashitani Y, Kizaki S et al (2016) Thermodynamic analysis and effect of crystallinity for silicon monoxide negative electrode for lithium ion batteries. J Power Sources 329:462–472

    Article  CAS  Google Scholar 

  109. Goriparti S, Miele E, De Angelis F et al (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 257:421–443

    Article  CAS  Google Scholar 

  110. Schulmeister K, Mader W (2003) TEM investigation on the structure of amorphous silicon monoxide. J Non-Cryst Solids 320(1–3):143–150

    Article  CAS  Google Scholar 

  111. Jung H, Yeo BC, Lee KR et al (2016) Atomistics of the lithiation of oxidized silicon (SiOx) nanowires in reactive molecular dynamics simulations. Phys Chem Chem Phys 18(47):32078–32086

    Article  CAS  PubMed  Google Scholar 

  112. Kim T, Park S, Oh SM (2007) Solid-state NMR and electrochemical dilatometry study on Li+ uptake/extraction mechanism in SiO electrode. J Electrochem Soc 154(12):A1112

    Article  CAS  Google Scholar 

  113. Yang J, Takeda Y, Imanishi N et al (2002) SiOx-based anodes for secondary lithium batteries. Solid State Ion 152:125–129

    Article  Google Scholar 

  114. Liu Z, Yu Q, Zhao Y et al (2019) Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chem Soc Rev 48(1):285–309

    Article  CAS  PubMed  Google Scholar 

  115. Hwang J, Kim K, Jung W S et al (2019) Facile and scalable synthesis of SiOx materials for Li-ion negative electrodes. J Power Sources 436:226883

  116. Hu G, Yu R, Liu Z et al (2021) Surface Oxidation layer-mediated conformal carbon coating on Si nanoparticles for enhanced lithium storage. ACS Appl Mater Interfaces 13(3):3991–3998

    Article  CAS  PubMed  Google Scholar 

  117. Moriga T, Watanabe K, Tsuji D et al (2000) Reaction mechanism of metal silicide Mg2Si for Li insertion. J Solid State Chem 153(2):386–390

    Article  CAS  Google Scholar 

  118. Pan Q, Zuo P, Mu T et al (2017) Improved electrochemical performance of micro-sized SiO-based composite anode by prelithiation of stabilized lithium metal powder. J Power Sources 347:170–177

    Article  CAS  Google Scholar 

  119. Wu S, Yang Y, Liu C et al (2020) In-situ polymerized binder: a three-in-one design strategy for all-integrated SiOx anode with high mass loading in lithium ion batteries. ACS Energy Lett 6(1):290–297

    Article  CAS  Google Scholar 

  120. Chen H, Wu Z, Su Z et al (2021) A mechanically robust self-healing binder for silicon anode in lithium ion batteries. Nano Energy 81:105654

Download references

Funding

National Natural Science Foundation of China, Nos. 21501015, Zhongliang Xiao, 21545010, Zhongliang Xiao, 31527803, Zhongliang Xiao, 2021 Graduate Research Innovation Project of Hunan Province, CX20210813, Youhang Zheng, The National Natural Science Foundation of Hunan Province, China, No. 2020JJ4620, Liubin Song, Scientifc Research Foundation of Hunan Provincial Education Department, No. 19B010, Liubin Song.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liubin Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Equation 2 has been corrected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Z., Wang, C., Song, L. et al. Research progress of nano-silicon-based materials and silicon-carbon composite anode materials for lithium-ion batteries. J Solid State Electrochem 26, 1125–1136 (2022). https://doi.org/10.1007/s10008-022-05141-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05141-x

Keywords

Navigation