Skip to main content

Advertisement

Log in

A new MnxOy/carbon nanorods derived from bimetallic Zn/Mn metal–organic framework as an efficient oxygen reduction reaction electrocatalyst for alkaline Zn-Air batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, nanorods like bimetallic Zn/Mn metal–organic-frameworks (MOFs) are proposed as the precursor for preparing MnxOy/porous carbon composite as a high-performance catalyst. The synthesis conditions, including the ratio of Zn:Mn and reaction time, are systematically investigated. The optimized sample has nanorods like morphology with a length of 200 nm and a diameter of 50 nm. Electrochemical tests show that the initial potential of the optimized MnxOy/porous carbon composite is 0.896 V(vs. reversible hydrogen electrode, RHE), the half-wave potential is 0.763 V (vs. RHE), and the kinetic current is 0.962 mA cm−2 (0.8 V). It has higher stability and selectivity than commercial Pt/C. The results reveal that the existence of Zn grain refinement occurs in MnxOy/carbon nanomaterials and increases its pore structure. The obtained material possesses a large electrochemical active area, indicating the higher exposed active sites and enhanced catalytic performance. Besides, the assembled Zn-air battery with MnxOy/porous carbon composite as cathode catalyst exhibits a power density of 0.14 W cm−2, close to that of commercial Pt/C. This work provides adequate data for further study of bimetallic MOF-derived materials as high-performance ORR catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shabani-Nooshabadi M, Zahedi F (2017) Electrochemical reduced graphene oxide-polyaniline as effective nanocomposite film for high-performance supercapacitor applications. Electrochim Acta 245:575–586. https://doi.org/10.1016/j.electacta.2017.05.152

    Article  CAS  Google Scholar 

  2. Kulkarni A, Siahrostami S, Patel A et al (2018) Understanding catalytic activity trends in the oxygen reduction reaction. Chem Rev 118:2302–2312. https://doi.org/10.1021/acs.chemrev.7b00488

    Article  CAS  PubMed  Google Scholar 

  3. Papada L, Kaliampakos D (2020) Being forced to skimp on energy needs: A new look at energy poverty in Greece. Energy Res Soc Sci 64:101450. https://doi.org/10.1016/j.erss.2020.101450

    Article  Google Scholar 

  4. Zhang J, Zhang J, He F et al (2021) Defect and doping co-engineered non-metal nanocarbon ORR electrocatalyst. Nano-Micro Lett 13:65. https://doi.org/10.1007/s40820-020-00579-y

    Article  CAS  Google Scholar 

  5. Sgroi MF, Zedde F, Barbera O et al (2016) Cost analysis of direct methanol fuel cell stacks for mass p[roduction. Energies 9:1008. https://doi.org/10.3390/en9121008

    Article  CAS  Google Scholar 

  6. Gebel G, Blanc N, Boudet N et al (2019) Heterogeneous nanostructural aging of fuel cell ionomer revealed by operando SAXS. ACS Appl Energ Mater 2:3071–3080. https://doi.org/10.1021/acsaem.8b02004

    Article  CAS  Google Scholar 

  7. Wang P, Pan J, Gong S et al (2017) A green preparation method of battery grade a-PbO based on Pb-O2 fuel cell. J Power Sources 360:324–327. https://doi.org/10.1016/j.jpowsour.2017.05.107

    Article  CAS  Google Scholar 

  8. Goswami C, Hazarika KK, Bharali P (2018) Transition metal oxide nanocatalysts for oxygen reduction reaction. Mater Sci Energy Technol 1:117–128. https://doi.org/10.1016/j.mset.2018.06.005

    Article  Google Scholar 

  9. Ma Y, Wang H, Key J et al (2014) Ultrafine iron oxide nanoparticles supported on N-doped carbon black as an oxygen reduction reaction catalyst. Int J Hydrogen Energ 39:14777–14782. https://doi.org/10.1016/j.ijhydene.2014.07.108

    Article  CAS  Google Scholar 

  10. Liang Y, Li Y, Wang H et al (2011) Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10:780–786. https://doi.org/10.1038/nmat3087

    Article  CAS  PubMed  Google Scholar 

  11. Kim A, Muthuchamy N, Yoon C et al (2018) MOF-derived Cu@Cu2O nanocatalyst for oxygen reduction reaction and cycloaddition reaction. Nanomaterials-Basel 8:138. https://doi.org/10.3390/nano8030138

    Article  CAS  PubMed Central  Google Scholar 

  12. Sun Y, Yang M, Pan J et al (2016) The mechanism of oxygen reduction on MnO2-catalyzed air cathode in alkaline solution. Electrochim Acta 197:68–76. https://doi.org/10.1016/j.electacta.2016.03.055

    Article  CAS  Google Scholar 

  13. Hazarika K, Goswami C, Saikia H et al (2017) Cubic Mn2O3 nanoparticles on carbon as bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Mol Catal 451:153–160. https://doi.org/10.1016/j.mcat.2017.12.012

    Article  CAS  Google Scholar 

  14. Yuan C, Wu HB, Xie Y et al (2014) Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Ed Engl 53:1488–1504. https://doi.org/10.1002/anie.201303971

    Article  CAS  PubMed  Google Scholar 

  15. Bhandary N, Ingole PP, Basu S (2018) Electrosynthesis of Mn-Fe oxide nanopetals on carbon paper as bi-functional electrocatalyst for oxygen reduction and oxygen evolution reaction. Int J Hydrogen Energ 43:3165–3171. https://doi.org/10.1016/j.ijhydene.2017.12.102

    Article  CAS  Google Scholar 

  16. Hong QS, Lu HM, Wang JR (2017) CuO nanoplatelets with highly dispersed Ce-doping derived from intercalated layered double hydroxides for synergistically enhanced oxygen reduction reaction in Al-air batteries. ACS Sustain Chem Eng 5:9169–9175. https://doi.org/10.1021/acssuschemeng.7b02076

    Article  CAS  Google Scholar 

  17. Ahmed MS, Choi B, Kim YB (2018) Development of highly active bifunctional electrocatalyst using Co3O4 on carbon nanotubes for oxygen reduction and oxygen evolution. Sci Rep 8:2543. https://doi.org/10.1038/s41598-018-20974-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li F, Yin Y, Zhang C et al (2020) Enhancing oxygen reduction performance of oxide-CNT through in-situ generated nanoalloy bridging. Appl Catal B-Environ 263:118297. https://doi.org/10.1016/j.apcatb.2019.118297

    Article  CAS  Google Scholar 

  19. Zhou R, Zheng Y, Hulicova-Jurcakova D et al (2013) Enhanced electrochemical catalytic activity by copper oxide grown on nitrogen-doped reduced graphene oxide. J Mater Chem A 1:13179–13185. https://doi.org/10.1039/C3TA13299D

    Article  CAS  Google Scholar 

  20. Zhao B, Zheng Y, Ye F et al (2015) Multifunctional iron oxide nanoflake/graphene composites derived from mechanochemical synthesis for enhanced lithium storage and electrocatalysis. ACS Appl Mater Inter 7:14446–14455. https://doi.org/10.1021/acsami.5b03477

    Article  CAS  Google Scholar 

  21. Wang Q, Astruc D (2020) State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem Rev 120:1438–1511. https://doi.org/10.1021/acs.chemrev.9b00223

    Article  CAS  PubMed  Google Scholar 

  22. Yin PQ, Yao T, Wu Y et al (2016) Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew Chem Int Edit 55:10800–10805. https://doi.org/10.1002/anie.201604802

    Article  CAS  Google Scholar 

  23. Tan A-D, Wan K, Wang Y-F et al (2018) N, S-containing MOF-derived dual-doped mesoporous carbon as a highly effective oxygen reduction reaction electrocatalyst. Catal Sci Technol 8:335–343. https://doi.org/10.1039/C7CY02265D

    Article  CAS  Google Scholar 

  24. Dang S, Zhu QLXuQ (2018) Nanomaterials derived from metal-organic frameworks. Nat Rev Mater. https://doi.org/10.1038/natrevmats.2017.75

    Article  Google Scholar 

  25. Chen Y, Ji S, Wang Y et al (2017) Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew Chem Int Edit 56:6937–6941. https://doi.org/10.1002/anie.201702473

    Article  CAS  Google Scholar 

  26. Xu K, Bao H, Tang C et al (2020) Engineering hierarchical MOFs-derived Fe-N-C nanostructure with improved oxygen reduction activity for zinc-air battery: the role of iron oxide. Mater Today Energy 18:100500. https://doi.org/10.1016/j.mtener.2020.100500

    Article  CAS  Google Scholar 

  27. Proietti E, Jaouen F, Lefèvre M et al (2011) Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat Commun 2:416. https://doi.org/10.1038/ncomms1427

    Article  CAS  PubMed  Google Scholar 

  28. Chen S, Xue M, Li YQ et al (2015) Porous ZnCo2O4 nanoparticles derived from a new mixed-metal organic framework for supercapacitors. Inorg Chem Front 2:177–183. https://doi.org/10.1039/c4qi00167b

    Article  CAS  Google Scholar 

  29. Tang J, Salunkhe RR, Liu J et al (2015) Thermal conversion of core-shell metal-organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. J Am Chem Soc 137:1572–1580. https://doi.org/10.1021/ja511539a

    Article  CAS  PubMed  Google Scholar 

  30. Kaneti YV, Zhang J, He Y-B et al (2017) Fabrication of a MOF-derived heteroatom-doped Co/CoO/carbon hybrid with superior sodium storage performance for sodium-ion batteries. J Mater Chem A 5:15356–15366. https://doi.org/10.1039/C7TA03939E

    Article  CAS  Google Scholar 

  31. Xia W, Zou R, An L et al (2015) A metal-organic framework route to in situ encapsulation of Co@Co3O4@C core@bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction. Energ Environ Sci 8:568–576. https://doi.org/10.1039/C4EE02281E

    Article  CAS  Google Scholar 

  32. Shinde SS, Lee CH, Jung J-Y et al (2019) Unveiling dual-linkage 3D hexaiminobenzene metal-organic frameworks towards long-lasting advanced reversible Zn-air batteries. Energ Environ Sci 12:727–738. https://doi.org/10.1039/C8EE02679C

    Article  CAS  Google Scholar 

  33. Shang L, Yu H, Huang X et al (2016) Well-dispersed ZIF-derived Co, N-co-doped carbon nanoframes through mesoporous-silica-protected calcination as efficient oxygen reduction Electrocatalysts. Adv Mater 28:1668–1674. https://doi.org/10.1002/adma.201505045

    Article  CAS  PubMed  Google Scholar 

  34. Khan IA, Qian Y, Badshah A et al (2016) Highly porous carbon derived from MOF-5 as a support of ORR electrocatalysts for fuel cells. ACS Appl Mater Inter 8:17268–17275. https://doi.org/10.1021/acsami.6b04548

    Article  CAS  Google Scholar 

  35. Corona B, Howard M, Zhang L et al (2016) Computational screening of core@shell nanoparticles for the hydrogen evolution and oxygen reduction reactions. J Chem Phys. https://doi.org/10.1063/1.4972579

    Article  PubMed  Google Scholar 

  36. Chen S, Xue M, Li Y et al (2015) Rational design and synthesis of NixCo3-xO4 nanoparticles derived from multivariate MOF-74 for supercapacitors. J Mater Chem A 3:20145–20152. https://doi.org/10.1039/C5TA02557E

    Article  CAS  Google Scholar 

  37. Zhang G, Jia Y, Zhang C et al (2019) A general route via formamide condensation to prepare atomically dispersed metal-nitrogen-carbon electrocatalysts for energy technologies. Energ Environ Sci 12:1317–1325. https://doi.org/10.1039/C9EE00162J

    Article  CAS  Google Scholar 

  38. Zhang D, Chen W, Li Z et al (2018) Isolated Fe and Co dual active sites on nitrogen-doped carbon for a highly efficient oxygen reduction reaction. Chem Commun 54:4274–4277. https://doi.org/10.1039/C8CC00988K

    Article  CAS  Google Scholar 

  39. Tatin A, Comminges C, Kokoh B et al (2016) Efficient electrolyzer for CO2 splitting in neutral water using earth-abundant materials. Proc Natl Acad Sci USA 113:5526–5529. https://doi.org/10.1073/pnas.1604628113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pachfule P, Shinde D, Majumder M et al (2016) Fabrication of carbon nanorods and graphene nanoribbons from a metal-organic framework. Nat Chem 8:718–724. https://doi.org/10.1038/nchem.2515

    Article  CAS  PubMed  Google Scholar 

  41. Li T, Xue B, Wang B et al (2017) Tubular monolayer superlattices of hollow Mn(3)O(4) nanocrystals and their oxygen reduction activity. J Am Chem Soc 139:12133–12136. https://doi.org/10.1021/jacs.7b06587

    Article  CAS  PubMed  Google Scholar 

  42. Liu Z, Zhang L, Xu G et al (2017) Mn3O4 hollow microcubes and solid nanospheres derived from a metal formate framework for electrochemical capacitor applications. RSC Adv 7:11129–11134. https://doi.org/10.1039/C7RA00435D

    Article  CAS  Google Scholar 

  43. Sheta SM, El-Sheikh SM, Abd-Elzaher MM et al (2019) A novel, fast, high sensitivity biosensor for supporting therapeutic decisions and onset actions for chest pain cases. RSC Adv 9:20463–20471. https://doi.org/10.1039/c9ra03030a

    Article  CAS  Google Scholar 

  44. Kuwahara Y, Yoshimura Y, Yamashita H (2017) Liquid-phase oxidation of alkylaromatics to aromatic ketones with molecular oxygen over a Mn-based metal-organic framework. Dalton T 46:8415–8421. https://doi.org/10.1039/C7DT01351E

    Article  CAS  Google Scholar 

  45. Pourfarzad H, Shabani-Nooshabadi M, Ganjali MR (2020) Novel bi-functional electrocatalysts based on the electrochemical synthesized bimetallicmetal organic frameworks: Towards high energy advanced reversible zinc-air batteries. J Power Sources 451:227768. https://doi.org/10.1016/j.jpowsour.2020.227768

    Article  CAS  Google Scholar 

  46. Ahn SH, Yu X, Manthiram A (2017) “Wiring” Fe-Nx-Embedded porous carbon framework onto 1D nanotubes for efficient oxygen reduction reaction in alkaline and acidic media. Adv Mater 29:1606534. https://doi.org/10.1002/adma.201606534

    Article  CAS  Google Scholar 

  47. Wang L, Han Y, Feng X et al (2016) Metal-organic frameworks for energy storage: Batteries and supercapacitors. Coordin Chem Rev 307:361–381. https://doi.org/10.1016/j.ccr.2015.09.002

    Article  CAS  Google Scholar 

  48. Wang Q, Yan J, Fan Z (2016) Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energ Environ Sci 9:729–762. https://doi.org/10.1039/C5EE03109E

    Article  CAS  Google Scholar 

  49. Dou JH, Sun L, Ge Y et al (2017) Signature of metallic behavior in the metal-organic frameworks M3(hexaiminobenzene)2 (M = Ni, Cu). J Am Chem Soc 139:13608–13611. https://doi.org/10.1021/jacs.7b07234

    Article  CAS  PubMed  Google Scholar 

  50. Sheberla D, Sun L, Blood-Forsythe MA et al (2014) High electrical conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a semiconducting metal-organic graphene analogue. J Am Chem Soc 136:8859–8862. https://doi.org/10.1021/ja502765n

    Article  CAS  PubMed  Google Scholar 

  51. Feng D, Lei T, Lukatskaya MR et al (2018) Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance. Nat Energy 3:30–36. https://doi.org/10.1038/s41560-017-0044-5

    Article  CAS  Google Scholar 

  52. Huang X, Sheng P, Tu Z et al (2015) A two-dimensional π-d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour. Nat Commun 6:7408. https://doi.org/10.1038/ncomms8408

    Article  CAS  PubMed  Google Scholar 

  53. Kambe T, Sakamoto R, Kusamoto T et al (2014) Redox control and high conductivity of nickel bis(dithiolene) complex π-nanosheet: a potential organic two-dimensional topological insulator. J Am Chem Soc 136:14357–14360. https://doi.org/10.1021/ja507619d

    Article  CAS  PubMed  Google Scholar 

  54. Yin P, Yao T, Wu Y et al (2016) Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew Chem Int Ed 55:10800–10805. https://doi.org/10.1002/anie.201604802

    Article  CAS  Google Scholar 

  55. Shang C, Yang M, Wang Z et al (2017) Encapsulated MnO in N-doping carbon nanofibers as efficient ORR electrocatalysts. Sci China Mater 60:937–946. https://doi.org/10.1007/s40843-017-9103-1

    Article  CAS  Google Scholar 

  56. Deng Y, Dong Y, Wang G et al (2017) Well-defined ZIF-derived Fe-N codoped carbon nanoframes as efficient oxygen reduction catalysts. ACS Appl Mater Interfaces 9:9699–9709. https://doi.org/10.1021/acsami.6b16851

    Article  CAS  PubMed  Google Scholar 

  57. Chai L, Zhang L, Wang X et al (2019) Bottom-up synthesis of MOF-derived hollow N-doped carbon materials for enhanced ORR performance. Carbon 146:248–256. https://doi.org/10.1016/j.carbon.2019.02.006

    Article  CAS  Google Scholar 

  58. Chang X, Zhang X, Chen N et al (2011) Oxidizing synthesis of Ni2+-Mn3+ layered double hydroxide with good crystallinity. Mater Res Bull 46:1843–1847. https://doi.org/10.1016/j.materresbull.2011.07.035

    Article  CAS  Google Scholar 

  59. Morales DM, Kazakova MA, Dieckhöfer S et al (2019) Trimetallic Mn-Fe-Ni oxide nanoparticles supported on multi-walled carbon nanotubes as high-performance bifunctional ORR/OER electrocatalyst in alkaline media. Adv Funct Mater 30:1905992. https://doi.org/10.1002/adfm.201905992

    Article  CAS  Google Scholar 

  60. Qin Q, Chen L, Wei T et al (2019) Ni/NiM2O4 (M = Mn or Fe) supported on N-doped carbon nanotubes as trifunctional electrocatalysts for ORR, OER and HER. Catal Sci Technol 9:1595–1601. https://doi.org/10.1039/c8cy02504e

    Article  CAS  Google Scholar 

  61. Wei C, Sun S, Mandler D et al (2019) Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity. Chem Soc Rev 48:2518–2534. https://doi.org/10.1039/C8CS00848E

    Article  CAS  PubMed  Google Scholar 

  62. Zhang H, Wang X, Yang Z et al (2019) Space-Confined Synthesis of Lasagna-like N-Doped Graphene-Wrapped Copper-Cobalt Sulfides as Efficient and Durable Electrocatalysts for Oxygen Reduction and Oxygen Evolution Reactions. ACS Sustain Chem Eng 8:1004–1014. https://doi.org/10.1021/acssuschemeng.9b05710

    Article  CAS  Google Scholar 

  63. Ji H, Wang M, Liu S et al (2020) Pyridinic and graphitic nitrogen-enriched carbon paper as a highly active bifunctional catalyst for Zn-air batteries. Electrochim Acta 334:135562. https://doi.org/10.1016/j.electacta.2019.135562

    Article  CAS  Google Scholar 

  64. Yang X, Peng W, Fu K et al (2020) Nanocomposites of honeycomb double-layered MnO2 nanosheets/cobalt doped hollow carbon nanofibers for application in supercapacitor and primary zinc-air battery. Electrochim Acta 340:135989. https://doi.org/10.1016/j.electacta.2020.135989

    Article  CAS  Google Scholar 

  65. Hu X, Min Y, Ma L-L et al (2020) Iron-nitrogen doped carbon with exclusive presence of FexN active sites as an efficient ORR electrocatalyst for Zn-air battery. Appl Catal B-Environ 268:118405. https://doi.org/10.1016/j.apcatb.2019.118405

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2019YFC1908304), the National Natural Science Foundation of China (21676022 & 21706004), and the Fundamental Research Funds for the Central Universities (BHYC1701A).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangshi Tang or Junqing Pan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 444 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Wang, J., Chai, L. et al. A new MnxOy/carbon nanorods derived from bimetallic Zn/Mn metal–organic framework as an efficient oxygen reduction reaction electrocatalyst for alkaline Zn-Air batteries. J Solid State Electrochem 26, 1163–1173 (2022). https://doi.org/10.1007/s10008-022-05139-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05139-5

Keywords

Navigation