Skip to main content
Log in

Thermal behavior and failure mechanism of large format lithium-ion battery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Thermal runaway (TR) behavior of 38 Ah lithium-ion batteries with various states of charge (SOC) is experimentally investigated in this work using extended volume plus accelerating rate calorimeter (EV+ ARC). Some of the critical kinetic parameters, such as onset exothermic temperature (Tonset), temperature of TR (TTR), and maximum temperature (Tmax), can be obtained to characterize the risks of TR event. The impact of SOC on thermal stability of the battery is researched. It is found that the higher the SOC state, the lower the battery safety. Thermal features of both the cathode and anode, as well as the materials, are also investigated. The morphology and the structure change of the materials are characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD). Finally, a general theory is proposed and detailed reactions are summarized in this work. The thermal runaway follows a mechanism of chain reactions, during which the decomposition reactions of the battery component materials occur one after another.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sasaki T, Ukyo Y, Novák P (2013) Nat Mater 12(6):569–575

    Article  CAS  PubMed  Google Scholar 

  2. Wang XC, Huang YD, Jia DZ, Guo ZP, Ni D, Miao M (2012) J Solid State Electrochem 16(1):17–24

    Article  CAS  Google Scholar 

  3. Feng XN, Ouyang MG, Liu X, Lu LG, Xia Y, He XM (2018) Energy Storage Mater 10:246–267

    Article  Google Scholar 

  4. Spotnitz R, Franklin J (2003) J Power Sources 113(1):81–100

    Article  CAS  Google Scholar 

  5. Wen J, Yu Y, Chen C (2012) Mater Express 2(3):197–212

    Article  CAS  Google Scholar 

  6. Ren DS, Liu X, Feng XN, Lu LG, Ouyang MG, Li JQ, He XM (2018) Appl Energy 228:633–644

    Article  CAS  Google Scholar 

  7. Feng XN, Zheng SQ, Ren DS, He XM, Wang L, Cui H, Liu X, Jin CY, Zhang FS, Xu CS, Hsu HJ, Gao S, Chen TY, Li YL, Wang TZ, Wang H, Li MG, Ouyang MG (2019) Appl Energy 246:53–64

    Article  CAS  Google Scholar 

  8. Feng XN, Ren DS, He XM, Ouyang MG (2020) Joule 4(4):743–770

    Article  CAS  Google Scholar 

  9. Ren DS, Hsu HJ, Li RH, Feng XN, Guo DX, Han XB, Lu LG, He XM, Gao S, Hou JX, Li Y, Wang YL, Ouyang MG (2019) eTransportation 2:100034

    Article  Google Scholar 

  10. Richard MN, Dahn JR (1999) J Electrochem Soc 146:2068–2077

    Article  CAS  Google Scholar 

  11. Jiang J, Dahn JR (2004) Electrochem Commun 6(7):724–728

    Article  CAS  Google Scholar 

  12. Ishikawa H, Mendoza O, Sone Y, Umeda M (2012) J Power Sources 198:236–242

    Article  CAS  Google Scholar 

  13. Feng XN, Fang M, He XM, Ouyang MG, Lu LG, Wang H, Zhang MX (2014) J Power Sources 255:294–301

    Article  CAS  Google Scholar 

  14. Dai JH, Shi C, Li C, Shen X, Peng LQ, Wu DZ, Sun DH, Zhang P, Zhao JB (2016) Energy Environ Sci 9(10):3252–3261

    Article  CAS  Google Scholar 

  15. Zhu YS, Wang FX, Liu LL, Xiao SY, Chang Z, Wu YP (2013) Energy Environ Sci 6(2):618–624

    Article  CAS  Google Scholar 

  16. Croce F, Focarete ML, Hassoun J, Meschini I, Scrosati B (2011) Energy Environ Sci 4(3):921–927

    Article  CAS  Google Scholar 

  17. Choudhury S, Azizi M, Raguzin I, Gobel M, Michel S, Simon F, Willomitzer A, Mechtcherine V, Stamm M, Ionov L (2017) Phys Chem Chem Phys 19(18):11239–11248

    Article  CAS  PubMed  Google Scholar 

  18. Miao YE, Zhu GN, Hou H, Xia YY, Liu T (2013) J Power Sources 226:82–86

    Article  CAS  Google Scholar 

  19. Liu X, Ren DS, Hsu HJ, Feng XN, Xu GL, Zhuang MH, Gao H, Lu LG, Han XB, Chu ZY, He XM, Amine K, Ouyang MG (2018) Joule 2:1–18

    Article  Google Scholar 

  20. Kvasha A, Gutiérrez C, Osa U, Meatza I, Blazquez JA, Macicior H, Urdampilleta I (2018) Energy 159:547–557

    Article  CAS  Google Scholar 

  21. Mendoza-Hernandez OS, Ishikawa H, Nishikawa Y, Maruyama Y, Umeda M (2015) J Power Sources 280:499–504

    Article  CAS  Google Scholar 

  22. Kim JH, Lee KH, Ko DC, Lee SB, Kim BM (2017) J Mecha Sci Tech 31(5):2505–2511

    Article  Google Scholar 

  23. Wuersig A, Scheifele W, Novák P (2007) J Electrochem Soc 154(5):A449–A454

    Article  CAS  Google Scholar 

  24. Yang H, Bang H, Amine K, Prakash J (2005) J Electrochem Soc 152(1):A73–A79

    Article  CAS  Google Scholar 

  25. Hu EY, Bak SM, Liu J, Yu XQ, Zhou YN, Ehrlich SN, Yang XQ, Nam KW (2014) Chem Mater 26(2):1108–1118

    Article  CAS  Google Scholar 

  26. Zhang Z, Fouchard D, Rea JR (1998) J Power Sources 70(1):16–20

    Article  CAS  Google Scholar 

  27. Huang XS (2011) J Solid State Electrochem 15(4):649–662

    Article  CAS  Google Scholar 

  28. Morcrette M, Chabre Y, Vaughan G, Amatucci G, Leriche JB, Patoux S, Masquelier C, Tarascon JM (2002) Electrochim Acta 47(19):3137–3149

    Article  CAS  Google Scholar 

  29. Ohzuku T, Iwakoshi Y, Sawai K (1993) J Electrochem Soc 140(9):2490–2496

    Article  CAS  Google Scholar 

  30. Wu K, Yang J, Liu Y, Zhang Y, Wang CY, Xu JM, Ning F, Wang DY (2013) J Power Sources 237:285–290

    Article  CAS  Google Scholar 

  31. Chen CH, Liu J, Amine K (2001) J Power Sources 96(2):321–328

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Key R&D Program of China (2016YFB0100304) and Gotion High-Tech Power Energy CO., Ltd., Hefei, Anhui, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaoxiong Lin or Zheng Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, D., Lin, S., Hu, S. et al. Thermal behavior and failure mechanism of large format lithium-ion battery. J Solid State Electrochem 25, 315–325 (2021). https://doi.org/10.1007/s10008-020-04810-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04810-z

Keywords

Navigation