Skip to main content

Advertisement

Log in

Electrochemical analysis of organic compounds in solid-state: applications of voltammetry of immobilized microparticles in bioanalysis and cultural heritage science

  • Review Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Most of the advances in the electrochemical study of solid materials are due to the development and application of voltammetry of immobilized microparticles in several areas besides electroanalytical. The technique has been applied in the evaluation of solid-state electrochemical behavior of compounds, qualitative and semi-quantitative determinations, monitoring of products derived from specific reactions, authentication and discrimination of several samples, and as quality control analytical tool. Recently, the studies involving solid organic compounds in different areas, such as pharmaceutical, biomedical, food, and cultural heritage sciences, have emerged and deserved special attention. In this regard, this paper aims to review the state-of-the-art of voltammetry of immobilized microparticles applied to organic compound analysis in solid-state in several research fields, highlighting some technique features and their applications for different purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bard AJ, Zoski CG (1998) Electroanalytical chemistry: a series of advances. Marcel Dekker

  2. Scholz F, Schröder U, Gulaboski R (2015) Electrochemistry of immobilized particles and droplets

  3. Cepriá G, Aranda C, Pérez-Arantegui J, Lacueva F, Castillo JR (2001) Voltammetry of immobilised microparticles: a powerful analytical technique to study the physical and chemical composition of brass. J Electroanal Chem 513:52–58. https://doi.org/10.1016/S0022-0728(01)00599-X

    Article  Google Scholar 

  4. Martini M, Albelda MT, Inclán M, Valle-Algarra FM, García-España E, Doménech-Carbó A (2014) Voltammetry of microparticles, scanning electrochemical microscopy and scanning tunneling microscopy applied to the study of dsDNA binding and damage by scorpiand-like polyamine receptors. J Electroanal Chem 720–721:24–33. https://doi.org/10.1016/j.jelechem.2014.02.021

    Article  CAS  Google Scholar 

  5. Scholz F, Nitschke L, Henrion G, Damaschun F (1989) Abrasive stripping voltammetry - the electrochemical spectroscopy for solid state: application for mineral analysis. Fresenius’ Zeitschrift für Anal Chemie 335:189–194. https://doi.org/10.1007/BF00522248

    Article  CAS  Google Scholar 

  6. Doménech-Carbó A, Labuda J, Scholz F (2013) Electroanalytical chemistry for the analysis of solids: characterization and classification (IUPAC technical report). Pure Appl Chem 85:609–631. https://doi.org/10.1351/PAC-REP-11-11-13

    Article  CAS  Google Scholar 

  7. Grygar T, Marken F, Schröder U, Scholz F (2002) Electrochemical analysis of solids. A review. Collect Czechoslov Chem Commun 67:163–208

    Article  CAS  Google Scholar 

  8. Scholz F, Meyer B (1994) Electrochemical solid state analysis: state of the art. Chem Soc Rev 23:341–347

    Article  CAS  Google Scholar 

  9. Lovrić M, Scholz F (1997) A model for the propagation of a redox reaction through microcrystals. J Solid State Electrochem 1:108–113. https://doi.org/10.1007/s100080050030

    Article  Google Scholar 

  10. Lovrić M, Scholz F (1999) A model for the coupled transport of ions and electrons in redox conductive microcrystals

  11. Oldham KB Voltammetry at a three-phase junction

  12. Schröder U, Oldham KB, Myland JC, Mahon PJ, Scholz F (2000) Modelling of solid state voltammetry of immobilized microcrystals assuming an initiation of the electrochemical reaction at a three-phase junction. Springer-Verlag

  13. Dostal A, Meyer B, Scholz F, Schröder U, Bond AM, Marken F, Shaw SJ (1995) Electrochemical study of microcrystalline solid Prussian blue particles mechanically attached to graphite and gold electrodes: electrochemically induced lattice reconstruction

  14. Komorsky-Lovrić Š (1997) Voltammetry of azobenzene microcrystals. J Solid State Electrochem 1:94–99. https://doi.org/10.1007/s100080050028

    Article  Google Scholar 

  15. Doménech A, Doménech-Carbó MT (2006) Chronoamperometric study of proton transfer/electron transfer in solid state electrochemistry of organic dyes. J Solid State Electrochem 10:949–958. https://doi.org/10.1007/s10008-005-0018-6

    Article  CAS  Google Scholar 

  16. Doménech A, Doménech-Carbó MT, De Agredos Pascual MLV (2007) Indigo/dehydroindigo/palygorskite complex in maya blue: an electrochemical approach. J Phys Chem C 111:4585–4595. https://doi.org/10.1021/jp067369g

    Article  CAS  Google Scholar 

  17. Doménech-Carbó A, Dias D, Doménech-Carbó MT (2020) Cation and anion electrochemically assisted solid-state transformations of malachite green. Phys Chem Chem Phys 22:1502–1510. https://doi.org/10.1039/c9cp05835d

    Article  CAS  PubMed  Google Scholar 

  18. Scholz F, Lange B (1992) Abrasive stripping voltammetry - an electrochemical solid state spectroscopy of wide applicability. Trends Anal Chem 11:359–367. https://doi.org/10.1016/0165-9936(92)80025-2

    Article  CAS  Google Scholar 

  19. Komorsky-Lovrić Š, Scholz F (1998) Stripping chronopotentiometry of immobilized microparticles. J Electroanal Chem 445:81–87. https://doi.org/10.1016/S0022-0728(97)00569-X

    Article  Google Scholar 

  20. Scholz F, Nitsehke L, Henrion G, Damasehun F (1989) Abrasive stripping voltammetry-the electrochemical spectroscopy for solid state: application for mineral analysis

  21. Di Fazio M, Felici AC, Catalli F, Doménech-Carbó MT, De Vito C, Doménech-Carbó A (2020) Solid-state electrochemical characterization of emissions and authorities producing Roman brass coins. Microchem J 152. https://doi.org/10.1016/j.microc.2019.104306

  22. Doménech-Carbó A, Doménech-Carbó MT, Montagna E, Álvarez-Romero C, Lee Y (2017) Electrochemical discrimination of mints: the last Chinese emperors Kuang Hsü and Hsüan T’ung monetary unification. Talanta 169:50–56. https://doi.org/10.1016/j.talanta.2017.03.025

    Article  CAS  PubMed  Google Scholar 

  23. Fabrizi L, Nigro L, Cappella F, Spagnoli F, Guirguis M, Niveau de Villedary y Mariñas AM, Doménech-Carbó MT, De Vito C, Doménech-Carbó A (2020) Discrimination and provenances of phoenician red slip ware using both the solid state electrochemistry and petrographic analyses. Electroanalysis 32:258–270. https://doi.org/10.1002/elan.201900515

  24. Doménech-Carbó A, Scholz F (2019) Electrochemical age determinations of metallic specimens - utilization of the corrosion clock. Acc Chem Res. https://doi.org/10.1021/acs.accounts.8b00472

  25. Doménech-Carbó A, Doménech-Carbó MT, Redondo-Marugán J, Osete-Cortina L, Barrio J, Fuentes A, Vivancos-Ramón MV, Al Sekhaneh W, Martínez B, Martínez-Lázaro I, Pasíes T (2018) Electrochemical characterization and dating of archaeological leaded bronze objects using the voltammetry of immobilized particles. Archaeometry 60:308–324. https://doi.org/10.1111/arcm.12308

    Article  CAS  Google Scholar 

  26. Doménech-Carbó A, Scholz F, Doménech-Carbó MT, Piquero-Cilla J, Montoya N, Pasíes-Oviedo T, Gozalbes M, Melchor-Montserrat JM, Oliver A (2018) Dating of archaeological gold by means of solid state electrochemistry. ChemElectroChem 5:2113–2117. https://doi.org/10.1002/celc.201800435

    Article  CAS  Google Scholar 

  27. Komorsky-lovric Ï, Galic I (1999) Voltammetric determination of cocaine microparticles. 120–123

  28. Komorsky-Lovrić Š, Mirčeski V, Scholz F (1999) Voltammetry of organic microparticles. Mikrochim Acta 132:67–77. https://doi.org/10.1007/PL00010075

    Article  Google Scholar 

  29. Komorsky-Lovrić Š, Nigović B (2004) Identification of 5-aminosalicylic acid, ciprofloxacin and azithromycin by abrasive stripping voltammetry. J Pharm Biomed Anal 36:81–89. https://doi.org/10.1016/j.jpba.2004.05.008

    Article  CAS  PubMed  Google Scholar 

  30. Komorsky-Lovrić Š, Nigović B (2006) Electrochemical characterization of simvastatin by abrasive stripping and square-wave voltammetry. J Electroanal Chem 593:125–130. https://doi.org/10.1016/j.jelechem.2006.03.026

    Article  CAS  Google Scholar 

  31. Komorsky-Lovrić Š, Vukašinović N, Penovski R (2003) Voltammetric determination of microparticles of some local anesthetics and antithusics immobilized on the graphite electrode. Electroanalysis 15:544–547. https://doi.org/10.1002/elan.200390067

    Article  Google Scholar 

  32. Paper F (2013) Voltammetry of immobilized particles of cannabinoids. 2631–2636. https://doi.org/10.1002/elan.201300410

  33. Doménech A, Navarro P, Arán VJ, Muro B, Montoya N, García-España E (2010) Selective electrochemical discrimination between dopamine and phenethylamine-derived psychotropic drugs using electrodes modified with an acyclic receptor containing two terminal 3-alkoxy-5-nitroindazole rings. Analyst 135:1449–1455. https://doi.org/10.1039/c0an00082e

    Article  CAS  PubMed  Google Scholar 

  34. Doménech A, Carbó D-C, Maciuk A, Figadè B, Poupon E, Cebrián G, Torrejón C-T (2013) Solid-state electrochemical assay of heme-binding molecules for screening of drugs with antimalarial potential. https://doi.org/10.1021/ac303746k

  35. Janeiro P, Brett AMO (2005) Solid state electrochemical oxidation mechanisms of morin in aqueous media. Electroanalysis 17:733–738. https://doi.org/10.1002/elan.200403155

    Article  CAS  Google Scholar 

  36. Doménech-Carbó A, Martini M, de Carvalho LM, Viana C, Doménech-Carbó MT, Silva M (2013) Screening of pharmacologic adulterant classes in herbal formulations using voltammetry of microparticles. J Pharm Biomed Anal 74:194–204. https://doi.org/10.1016/j.jpba.2012.10.031

    Article  CAS  PubMed  Google Scholar 

  37. Martini M, Machado De Carvalho L, Blasco-Blasco A, Doménech-Carbó A (2015) Screening and authentication of herbal formulations based on microextraction-assisted voltammetry of microparticles. Anal Methods 7:5740–5747. https://doi.org/10.1039/c5ay01145k

    Article  CAS  Google Scholar 

  38. Doménech-Carbó A, Martini M, de Carvalho LM, Viana C, Doménech-Carbó MT, Silva M (2013) Standard additions-dilution method for absolute quantification in voltammetry of microparticles. Application for determining psychoactive 1,4-benzodiazepine and antidepressants drugs as adulterants in phytotherapeutic formulations. J Pharm Biomed Anal 80:159–163. https://doi.org/10.1016/j.jpba.2013.03.005

    Article  CAS  PubMed  Google Scholar 

  39. Lovrić ŠK, Jovanović IN (2016) Abrasive stripping square wave voltammetry of some natural antioxidants. 11:836–842

  40. Maciel JV, Silva TA, Dias D (2018) Electroanalytical determination of eugenol in clove oil by voltammetry of immobilized microdroplets. 2277–2285

  41. Maciel JV, Fava EL, Silva TA, Dias D, Fatibello-filho O (2017) A combination of voltammetry of immobilized microparticles and carbon black-based crosslinked chitosan films deposited on glassy carbon electrode for the quantification of hydroquinone in dermatologic cream samples. 2859–2868. https://doi.org/10.1007/s10008-017-3614-3

  42. da Silveira GD, Bressan LP, Schmidt MEP, Dal Molin TR, Teixeira CA, Poppi RJ, da Silva JAF (2020) Electrochemical behavior of 5-type phosphodiesterase inhibitory drugs in solid state by voltammetry of immobilized microparticles. J Solid State Electrochem. https://doi.org/10.1007/s10008-020-04533-1

  43. Komorsky-Lovrić Š, Novak I (2013) Abrasive stripping voltammetry of myricetin and dihydromyricetin. Electrochim Acta 98:153–156. https://doi.org/10.1016/j.electacta.2013.03.062

    Article  CAS  Google Scholar 

  44. Čižmek L, Novak Jovanović I, Komorsky-Lovrić Š (2017) Quantitative determination of capsaicinoids in ground hot pepper samples using voltammetry of microparticles. Bulg Chem Commun 49:233–240

    Google Scholar 

  45. Novak Jovanović I, Čižmek L, Komorsky-Lovrić Š (2016) Electrochemistry-based determination of pungency level of hot peppers using the voltammetry of microparticles. Electrochim Acta 208:273–281. https://doi.org/10.1016/j.electacta.2016.04.066

    Article  CAS  Google Scholar 

  46. Čižmek L, Komorsky-Lovrić Š (2019) Study of electrochemical behaviour of carotenoids in aqueous media. Electroanalysis 31:83–90. https://doi.org/10.1002/elan.201800531

    Article  CAS  Google Scholar 

  47. Čižmek L, Komorsky-Lovrić Š (2020) Electrochemistry as a screening method in determination of carotenoids in crustacean samples used in everyday diet. Food Chem:309. https://doi.org/10.1016/j.foodchem.2019.125706

  48. Komorsky-Lovrić Š, Novak I (2011) Abrasive stripping square-wave voltammetry of blackberry, raspberry, strawberry, pomegranate, and sweet and blue potatoes. J Food Sci 76:916–920. https://doi.org/10.1111/j.1750-3841.2011.02256.x

    Article  CAS  Google Scholar 

  49. Muñiz-Calvo S, Guillamón JM, Domínguez I, Doménech-Carbó A (2017) Detecting and monitoring the production of melatonin and other related indole compounds in different saccharomyces strains by solid-state electrochemical techniques. Food Anal Methods 10:1408–1418. https://doi.org/10.1007/s12161-016-0699-8

    Article  Google Scholar 

  50. Cardoso RM, Kalinke C, Rocha RG, dos Santos PL, Rocha DP, Oliveira PR, Janegitz BC, Bonacin JA, Richter EM, Munoz RAA (2020) Additive-manufactured (3D-printed) electrochemical sensors: a critical review. Anal Chim Acta. https://doi.org/10.1016/j.aca.2020.03.028

  51. Richter EM, Rocha DP, Cardoso RM, Keefe EM, Foster CW, Munoz RAA, Banks CE (2019) Complete additively manufactured (3D-printed) electrochemical sensing platform. Anal Chem 91:12844–12851. https://doi.org/10.1021/acs.analchem.9b02573

    Article  CAS  PubMed  Google Scholar 

  52. Doménech-Carbó A, Doménech-Carbó MT, Calisti M, Maiolo V (2010) Sequential identification of organic dyes using the voltammetry of microparticles approach. Talanta 81:404–411. https://doi.org/10.1016/j.talanta.2009.12.016

    Article  CAS  PubMed  Google Scholar 

  53. da Silveira GD, de Carvalho LM, Montoya N, Domenech-Carbó A (2017) Solid state electrochemical behavior of organosulfur compounds. J Electroanal Chem 806. https://doi.org/10.1016/j.jelechem.2017.10.055

  54. Domínguez I, Doménech-Carbó A (2015) Screening and authentication of tea varieties based on microextraction-assisted voltammetry of microparticles. Sensors Actuators B Chem 210:491–499. https://doi.org/10.1016/j.snb.2015.01.009

    Article  CAS  Google Scholar 

  55. Ortiz-Miranda AS, König P, Kahlert H, Scholz F, Osete-Cortina L, Doménech-Carbó MT, Doménech-Carbó A (2016) Voltammetric analysis of Pinus needles with physiological, phylogenetic, and forensic applications. Anal Bioanal Chem 408:4943–4952. https://doi.org/10.1007/s00216-016-9588-7

    Article  CAS  PubMed  Google Scholar 

  56. Pe J (2005) Cadmium yellow detection and quantification by voltammetry of immobilized microparticles. 1078–1084. https://doi.org/10.1002/elan.200403217

  57. Katsounaros I, Cherevko S, Zeradjanin AR, KJ JM, Katsounaros I, KJ JM (2014) Oxygen electrochemistry as a cornerstone for sustainable energy conversion angewandte reviews. Angew Chem Int Ed 53:102–121. https://doi.org/10.1002/anie.201306588

    Article  CAS  Google Scholar 

  58. Doménech-Carbó A, Cebrián-Torrejón G, Montoya N, Ueberschaar N, Scotti MT, Benfodda Z, Hertweck C (2017) Electrochemical monitoring of ROS generation by anticancer agents: the case of chartreusin. RSC Adv 7:45200–45210. https://doi.org/10.1039/c7ra08238j

    Article  CAS  Google Scholar 

  59. Doménech-Carbó A, Cebrián-Torrejón G, De Miguel L, Tordera V, Rodrigues-Furtado D, Assad-Kahn S, Fournet A, Figadère B, Vázquez-Manrique RP, Poupon E (2014) DsDNA, ssDNA, G-quadruplex DNA, and nucleosomal DNA electrochemical screening using canthin-6-one alkaloid-modified electrodes. Electrochim Acta 115:546–552. https://doi.org/10.1016/j.electacta.2013.11.025

    Article  CAS  Google Scholar 

  60. Imperatore C, Cimino P, Cebrián-Torrejón G, Persico M, Aiello A, Senese M, Fattorusso C, Menna M, Doménech-Carbó A (2017) Insight into the mechanism of action of marine cytotoxic thiazinoquinones. Mar Drugs 15:1–16. https://doi.org/10.3390/md15110335

    Article  CAS  Google Scholar 

  61. Doménech-Carbó A, Cebrián-Torrejón G, Lopes-Souto A, Martins-De-Moraes M, Jorge-Kato M, Fechine-Tavares J, Barbosa-Filho JM (2015) Electrochemical ecology: VIMP monitoring of plant defense against external stressors. RSC Adv 5:61006–61011. https://doi.org/10.1039/c5ra11336a

    Article  Google Scholar 

  62. Komorsky-Lovrić Š, Novak I (2009) Estimation of antioxidative properties of tea leaves by abrasive stripping electrochemistry using paraffin-impregnated graphite electrode. Collect Czechoslov Chem Commun 74:1467–1475. https://doi.org/10.1135/cccc2009062

    Article  CAS  Google Scholar 

  63. Doménech-Carbó A, Ibars AM, Prieto-Mossi J, Estrelles E, Doménech-Carbó MT, Ortiz-Miranda AS, Martini M, Lee Y (2017) Access to phylogeny from voltammetric fingerprints of seeds: the asparagus case. Electroanalysis 29:643–650. https://doi.org/10.1002/elan.201600588

    Article  CAS  Google Scholar 

  64. Doménech-Carbó A, Rodrigo R, Maréchal JD, Poupon E, Fournet A, Figadère B, Cebrián-Torrejón G (2017) Bioelectrochemical monitoring of soluble guanylate cyclase inhibition by the natural β-carboline canthin-6-one. J Mol Struct 1134:661–667. https://doi.org/10.1016/j.molstruc.2016.12.016

    Article  CAS  Google Scholar 

  65. Doménech-Carbó A, Pontones JL, Doménech-Casasús C, Artés J, Villaroya S, Ramos D (2018) Electrochemical detection and screening of bladder cancer recurrence using direct electrochemical analysis of urine: a non-invasive tool for diagnosis. Sensors Actuators B Chem 265:346–354. https://doi.org/10.1016/j.snb.2018.03.048

    Article  CAS  Google Scholar 

  66. Doménech-Carbó A, Cervelló-Bulls P, González JM, Soriano P, Estrelles E, Montoya N (2019) Electrochemical monitoring of ROS influence on seedlings and germination response to salinity stress of three species of the tribe Inuleae. RSC Adv 9:17856–17867. https://doi.org/10.1039/c9ra02556a

    Article  CAS  Google Scholar 

  67. Doménech-Carbó A, Ibars AM, Prieto-Mossi J, Estrelles E, Scholz F, Cebrián-Torrejón G, Martini M (2015) Electrochemistry-based chemotaxonomy in plants using the voltammetry of microparticles methodology. New J Chem 39:7421–7428. https://doi.org/10.1039/c5nj01233c

    Article  Google Scholar 

  68. Mateo EM, Gómez JV, Montoya N, Mateo-Castro R, Gimeno-Adelantado JV, Jiménez M, Doménech-Carbó A (2018) Electrochemical identification of toxigenic fungal species using solid-state voltammetry strategies. Food Chem 267:91–100. https://doi.org/10.1016/j.foodchem.2017.02.033

    Article  CAS  PubMed  Google Scholar 

  69. Cebrián-Torrejón G, Doménech-Carbó A, Scotti MT, Fournet A, Figadère B, Poupon E (2015) Experimental and theoretical study of possible correlation between the electrochemistry of canthin-6-one and the anti-proliferative activity against human cancer stem cells. J Mol Struct 1102:242–246. https://doi.org/10.1016/j.molstruc.2015.08.042

    Article  CAS  Google Scholar 

  70. Imperatore C, Persico M, Aiello A, Luciano P, Guiso M, Sanasi MF, Taramelli D, Parapini S, Cebrián-Torrejón G, Doménech-Carbó A, Fattorusso C, Menna M (2015) Marine inspired antiplasmodial thiazinoquinones: synthesis, computational studies and electrochemical assays. RSC Adv 5:70689–70702. https://doi.org/10.1039/c5ra09302c

    Article  CAS  Google Scholar 

  71. Doménech-Carbó A, Domínguez I, Hernández-Muñoz P, Gavara R (2015) Electrochemical tomato (Solanum lycopersicum L.) characterisation using contact probe in situ voltammetry. Food Chem 172:318–325. https://doi.org/10.1016/j.foodchem.2014.09.066

    Article  CAS  PubMed  Google Scholar 

  72. Doménech-Carbó A, Gavara R, Hernández-Muñoz P, Domínguez I (2015) Contact probe voltammetry for in situ monitoring of the reactivity of phenolic tomato (Solanum lycopersicum L.) compounds with ROS. Talanta 144:1207–1215. https://doi.org/10.1016/j.talanta.2015.07.092

    Article  CAS  PubMed  Google Scholar 

  73. Doménech-Carbó A, Doménech-Casasús C, Pontones JL, Ramos D Biomedical application of VIMP: screening of malignant cells in the prostate. https://doi.org/10.1007/s10008-020-04638-7

  74. da Silveira GD, Faccin H, Claussen L, Goularte RB, Do Nascimento PC, Bohrer D, Cravo M, LFM L, de Carvalho LM (2016) A liquid chromatography–atmospheric pressure photoionization tandem mass spectrometric method for the determination of organosulfur compounds in petroleum asphalt cements. J Chromatogr A 1457. https://doi.org/10.1016/j.chroma.2016.06.003

  75. da Silveira GD, Hoinacki CK, Bueno Goularte R, Do Nascimento PC, Bohrer D, Cravo M, Leite LFM, de Carvalho LM (2017) A cleanup method using solid phase extraction for the determination of organosulfur compounds in petroleum asphalt cements. Fuel 202. https://doi.org/10.1016/j.fuel.2017.04.020

  76. da Silveira GD, de Carvalho LM, Montoya N, Domenech-Carbó A (2018) Evaluation of aging processes of petroleum asphalt cements by solid state electrochemical monitoring. Electrochim Acta 270. https://doi.org/10.1016/j.electacta.2018.02.039

  77. Doménech-Carbó A, da Silveira GD, Medina-Alcaide MÁ, Carmona AM, López-Serrano D, Pasíes-Oviedo T, Algarra-Pardo VM, de Carvalho LM, Montoya N (2018) Polythiophenes as markers of asphalt and archaeological tar pitch aging. Characterization using solid-state electrochemistry. Electrochem Commun 87. https://doi.org/10.1016/j.elecom.2017.12.020

  78. Doménech-Carbó A, Doménech-Carbó MT, Moya-Moreno M, Gimeno-Adelantado JV, Bosch-Reig F (2000) Identification of inorganic pigments from paintings and polychromed sculptures immobilized into polymer film electrodes by stripping differential pulse voltammetry. Anal Chim Acta 407:275–289. https://doi.org/10.1016/S0003-2670(99)00781-3

    Article  Google Scholar 

  79. Mouhandess MT, Chassagneux F, Vittori O (1982) Electrochemical behaviour of α-Fe2O3 using carbon paste electrodes: influence of particle size. J Electroanal Chem 131:367–371. https://doi.org/10.1016/0022-0728(82)87088-5

    Article  CAS  Google Scholar 

  80. Doménech-Carbó A, Doménech-Carbó MT (2018) Electroanalytical techniques in archaeological and art conservation. Pure Appl Chem. https://doi.org/10.1515/pac-2017-0508

  81. Doménech-Carbo A (2017) Electrochemical dating: a review. J Solid State Electrochem 21:1987–1998. https://doi.org/10.1007/s10008-017-3620-5

    Article  CAS  Google Scholar 

  82. Di Turo F (2019) Limits and perspectives of archaeometric analysis of archaeological metals: a focus on the electrochemistry for studying ancient bronze coins. J Cult Herit

    Google Scholar 

  83. Doménech-Carbó A (2010) Voltammetric methods applied to identification, speciation, and quantification of analytes from works of art: an overview. J Solid State Electrochem 14:363–379. https://doi.org/10.1007/s10008-009-0858-6

    Article  CAS  Google Scholar 

  84. Di Turo F, Mai C, Haba-Martínez A, Doménech-Carbó A (2019) Discrimination of papers used in conservation and restoration by the means of the voltammetry of immobilized microparticles technique. Anal Methods 11:4431–4439. https://doi.org/10.1039/c9ay00998a

    Article  CAS  Google Scholar 

  85. Doménech-Carbó A, Doménech-Carbó MT, Ferragud-Adam X, Ortiz-Miranda AS, Montoya N, Pasíes-Oviedo T, Peiró-Ronda MA, Vives-Ferrándiz J, Carrión Marco Y (2017) Identification of vegetal species in wooden objects using in situ microextraction-assisted voltammetry of microparticles. Anal Methods 9:2041–2048. https://doi.org/10.1039/c7ay00323d

    Article  Google Scholar 

  86. Hao Z, Iqbal A (1997) Some aspects of organic pigments. Chem Soc Rev 26:203. https://doi.org/10.1039/cs9972600203

    Article  CAS  Google Scholar 

  87. Schwindt W, Faulhaber G (1984) The development of pigment printing over the last 50 years. Rev Prog Color Relat Top 14:166–175. https://doi.org/10.1111/j.1478-4408.1984.tb00058.x

    Article  CAS  Google Scholar 

  88. Bechtold T, Mussak R (2009) Handbook of natural colorants. Wiley

  89. Almeida PJ, Rodrigues JA, Barros AA, Fogg AG (1999) Voltammetric studies of anthraquinone dyes adsorbed at a hanging mercury drop electrode using fast pulse techniques. Anal Chim Acta 385:287–293. https://doi.org/10.1016/S0003-2670(98)00586-8

    Article  CAS  Google Scholar 

  90. Bersier PM, Bersier J (1986) Polarography and voltammetry of dyes and intermediates. Trends Anal Chem 5:97–102

    Article  CAS  Google Scholar 

  91. Zima J, Barek J, Moreira JC, Mejstřík V, Fogg AG (2001) Electrochemical determination of trace amounts of environmentally important dyes. Anal Bioanal Chem 369:567–570. https://doi.org/10.1007/s002160100712

    Article  CAS  Google Scholar 

  92. Barek J, Fogg AG, Moreira JC, MVB Z, Zima J (1996) Polarographic and voltammetric determination of selected triazine-based azo dyes with different reactive groups. Anal Chim Acta 320:31–42. https://doi.org/10.1016/0003-2670(95)00520-X

    Article  CAS  Google Scholar 

  93. Fogg AG, Zanoni MVB, Yusoff ARHM, Ahmad R, Barek J, Zima J (1998) Polarographic and voltammetric determination of triazine-based reactive azo dyes with 4-carboxypyridyl and 1,4-diazabicyclo[2,2,2]octanyl (DABCO) leaving groups. Anal Chim Acta 362:235–240. https://doi.org/10.1016/S0003-2670(98)00056-7

    Article  CAS  Google Scholar 

  94. Combeau S, Chatelut M, Vittori O (2002) Identification and simultaneous determination of Azorubin, Allura red and Ponceau 4R by differential pulse polarography: application to soft drinks. Talanta 56:115–122. https://doi.org/10.1016/S0039-9140(01)00540-9

    Article  CAS  PubMed  Google Scholar 

  95. Doménech-Carbó A, Doménech-Carbó MT, Saurí-Peris MC, Gimeno-Adelantado JV, Bosch-Reig F (2003) Electrochemical identification of anthraquinone-based dyes in solid microsamples by square wave voltammetry using graphite/polyester composite electrodes. Anal Bioanal Chem 375:1169–1175. https://doi.org/10.1007/s00216-002-1742-8

    Article  CAS  PubMed  Google Scholar 

  96. Grygar T, Kučková Š, Hradil D, Hradilová D (2003) Electrochemical analysis of natural solid organic dyes and pigments. J Solid State Electrochem 7:706–713. https://doi.org/10.1007/s10008-003-0380-1

    Article  CAS  Google Scholar 

  97. Doménech-Carbó A, Doménech-Carbó MT, Saurí-Peris MC (2005) Electrochemical identification of flavonoid dyes in solid work of art samples by abrasive voltammetry at paraffin-impregnated graphite electrodes. Talanta 66:769–782. https://doi.org/10.1016/j.talanta.2004.12.034

    Article  CAS  PubMed  Google Scholar 

  98. Doménech-Carbó A, Doménech-Carbó MT, Calisti M, Maiolo V (2010) Identification of naphthoquinonic and anthraquinonic dyes via sequential potential steps applied to the voltammetry of microparticles methodology. J Solid State Electrochem 14:465–477. https://doi.org/10.1007/s10008-009-0899-x

    Article  CAS  Google Scholar 

  99. Doménech-Carbó A, Doménech-Carbó T, Saurí-Peris C, Gimeno-Adelantado JV, Bosch-Reig F (2005) Identification of curcuma and safflower dyes by voltammetry of microparticles using paraffin-impregnated graphite electrodes. Microchim Acta 152:75–84. https://doi.org/10.1007/s00604-005-0410-z

    Article  CAS  Google Scholar 

  100. Long Y, Zhang W, Wang F, Chen Z (2014) Simultaneous determination of three curcuminoids in Curcuma longa L. by high performance liquid chromatography coupled with electrochemical detection. J Pharm Anal 4:325–330. https://doi.org/10.1016/j.jpha.2013.10.002

    Article  CAS  PubMed  Google Scholar 

  101. Schumacher S, Nagel T, Scheller FW, Gajovic-Eichelmann N (2011) Alizarin red S as an electrochemical indicator for saccharide recognition. Electrochim Acta 56:6607–6611. https://doi.org/10.1016/j.electacta.2011.04.081

    Article  CAS  Google Scholar 

  102. Masek A, Zaborski M, Chrzescijanska E (2011) Electrooxidation of flavonoids at platinum electrode studied by cyclic voltammetry. Food Chem 127:699–704. https://doi.org/10.1016/j.foodchem.2010.12.127

    Article  CAS  PubMed  Google Scholar 

  103. Ramešová Š, Sokolová R, Tarábek J, Degano I (2013) The oxidation of luteolin, the natural flavonoid dye. Electrochim Acta 110:646–654. https://doi.org/10.1016/j.electacta.2013.06.136

    Article  CAS  Google Scholar 

  104. Faouzi AM, Nasr B, Abdellatif G (2007) Electrochemical degradation of anthraquinone dye alizarin red S by anodic oxidation on boron-doped diamond. Dyes Pigments 73:86–89. https://doi.org/10.1016/j.dyepig.2005.10.013

    Article  CAS  Google Scholar 

  105. Li K, Li Y, Yang L, Wang L, Ye B (2014) The electrochemical characterization of curcumin and its selective detection in Curcuma using a graphene-modified electrode. Anal Methods 6:7801–7808. https://doi.org/10.1039/c4ay01492h

    Article  CAS  Google Scholar 

  106. Maugard T, Enaud E, Choisy P, Legoy MD (2001) Identification of an indigo precursor from leaves of Isatis tinctoria (Woad). Phytochemistry 58:897–904. https://doi.org/10.1016/S0031-9422(01)00335-1

    Article  CAS  PubMed  Google Scholar 

  107. Guarino C, Casoria P, Menale B (2000) Cultivation and use of Isatis tinctoria L. (Brassicaceae) in Southern Italy. Econ Bot 54:395–400. https://doi.org/10.1007/BF02864789

    Article  Google Scholar 

  108. Angelini LG, Tozzi S, Nassi o Di Nasso N (2007) Differences in leaf yield and indigo precursors production in woad (Isatis tinctoria L.) and Chinese woad (Isatis indigotica fort.) genotypes. F Crop Res 101:285–295. https://doi.org/10.1016/j.fcr.2006.12.004

    Article  Google Scholar 

  109. Sousa MM, Miguel C, Rodrigues I, Parola AJ, Pina F, Seixas De Melo JS, Melo MJ (2008) A photochemical study on the blue dye indigo: from solution to ancient Andean textiles. Photochem Photobiol Sci 7:1353–1359. https://doi.org/10.1039/b809578g

    Article  CAS  PubMed  Google Scholar 

  110. Bond AM, Marken F, Hill E, Compton RG, Hügel H (1997) The electrochemical reduction of indigo dissolved in organic solvents and as a solid mechanically attached to a basal plane pyrolytic graphite electrode immersed in aqueous electrolyte solution. J Chem Soc Perkin Trans 2(6)):1735–1742. https://doi.org/10.1039/a701003f

    Article  Google Scholar 

  111. Doménech A, Doménech-Carbó MT, De Agredos Pascual MLV (2007) Electrochemical monitoring of indigo preparation using Maya’s ancient procedures. J Solid State Electrochem 11:1335–1346. https://doi.org/10.1007/s10008-007-0296-2

    Article  CAS  Google Scholar 

  112. Olphen HV (1966) Maya blue : a clay-organic pigment?. H. van Olphen American Association for the Advancement of Science Stable URL : http://www.jstor.org/stable/1719059. Science 80(154):645–646

  113. Doménech A, Doménech-Carbó MT, Del Río MS, De Agredos Pascual MLV (2009) Comparative study of different indigo-clay Maya blue-like systems using the voltammetry of microparticles approach. J Solid State Electrochem 13:869–878. https://doi.org/10.1007/s10008-008-0616-1

    Article  CAS  Google Scholar 

  114. Doménech A, Doménech-Carbõ MT, Vázquez De Agredos-Pascual ML (2011) From maya blue to “maya yellow”: a connection between ancient nanostructured materials from the voltammetry of microparticles. Angew Chemie - Int Ed 50:5741–5744. https://doi.org/10.1002/anie.201100921

    Article  CAS  Google Scholar 

  115. Doménech A, Doménech-Carbó MT, Vázquez De Agredos Pascual ML (2007) Chemometric study of Maya blue from the voltammetry of microparticles approach. Anal Chem 79:2812–2821. https://doi.org/10.1021/ac0623686

    Article  CAS  PubMed  Google Scholar 

  116. Doménech-Carbó A, Doménech-Carbó MT, Valle-Algarra FM, Domine ME, Osete-Cortina L (2013) On the dehydroindigo contribution to Maya blue. J Mater Sci 48:7171–7183. https://doi.org/10.1007/s10853-013-7534-z

    Article  CAS  Google Scholar 

  117. Doménech-Carbó A, Holmwood S, Di Turo F, Montoya N, Valle-Algarra FM, Edwards HGM, Doménech-Carbó MT (2019) Composition and color of maya blue: reexamination of literature data based on the dehydroindigo model. J Phys Chem C 123:770–782. https://doi.org/10.1021/acs.jpcc.8b08448

    Article  CAS  Google Scholar 

  118. Doménech A, Doménech-Carbó MT, Osete-Cortina L, Montoya N (2013) Application of solid-state electrochemistry techniques to polyfunctional organic-inorganic hybrid materials: the Maya blue problem. Microporous Mesoporous Mater 166:123–130. https://doi.org/10.1016/j.micromeso.2012.04.031

    Article  CAS  Google Scholar 

  119. Ambrosi A, Pumera M (2016) 3D-printing technologies for electrochemical applications. Chem Soc Rev 45:2740–2755

    Article  CAS  Google Scholar 

  120. Maciel JV, Durigon AMM, Souza MM, Quadrado RFN, Fajardo AR, Dias D (2019) Polysaccharides derived from natural sources applied to the development of chemically modified electrodes for environmental applications: a review. Trends Environ Anal Chem 22:e00062

    Article  CAS  Google Scholar 

  121. Doménech-Carbó A Voltammetry of immobilized particles for the future. https://doi.org/10.1007/s10008-020-04562-w

Download references

Acknowledgments

We would like to thank CAB English Lessons for the English correction.

Funding

The authors acknowledge the financial support provided by the Fundação de Amparo à Pesquisa do Estado de São Paulo, FAPESP (grant nos. 2018/13496-8 and 2018/06478-3) and the Instituto Nacional de Ciência e Tecnologia em Bioanalítica, INCTBio (grant no. 2014/50867-3 - FAPESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Géssica Domingos da Silveira.

Additional information

Personal dedication: The authors would like to dedicate this to Professor Fritz Scholz on the occasion of his 65th birthday.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silveira, G.D., Di Turo, F., Dias, D. et al. Electrochemical analysis of organic compounds in solid-state: applications of voltammetry of immobilized microparticles in bioanalysis and cultural heritage science. J Solid State Electrochem 24, 2633–2652 (2020). https://doi.org/10.1007/s10008-020-04720-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04720-0

Keywords

Navigation