Skip to main content
Log in

Effects of polyvinyl alcohol on the electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathode material

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In view of the close relationship between the morphology of LiNi0.8Co0.15Al0.05O2 (NCA) and its electrochemical performance, polyvinyl alcohol (PVA) was added to control the NCA morphology. And thus a new NCA cathode material modified by PVA (NCA-PVA) was prepared. The morphology and structure of the obtained samples were characterized by X-ray diffraction, scanning electron microscopy, and laser diffraction. The electrochemical performance was characterized with electrochemical workstation and cell tester by assembling into CR2032 coin-type half-cell. The results show that the obtained NCA-PVA has a better layer structure and smaller cation mixing degree, smaller particle size, and more uniform particle size distribution than the pristine NCA without adding PVA. The electrochemical performance is also improved: the initial discharge capacity increases from 143.36 to 184.84 mAh g−1. And the charge-discharge efficiency increases from 78.25 to 86.42%. The specific discharge capacities of NCA-PVA are all higher than that of the NCA (about 50 mAh g−1) at all testing rates (0.1, 0.2, 0.5, 1.0, 2.0, and 5.0 C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xie H, Hu G, Du K, Peng Z, Cao Y (2016) An improved continuous co-precipitation method to synthesize LiNi0.80Co0.15Al0.05O2 cathode material. J Alloy Compd 666:84–87

    Article  CAS  Google Scholar 

  2. Li X, Ge W, Wang H, Yan X, Deng B, Chen T, Qu M (2017) Enhancing cycle stability and storage property of LiNi0.8Co0.15Al0.05O2 by using fast cooling method. Electrochim Acta 227:225–234

    Article  CAS  Google Scholar 

  3. Qiu Z, Zhang Y, Dong P, Xia S, Yao Y (2017) A facile method for synthesis of LiNi0.8Co0.15Al0.05O2 cathode material. Solid State Ionics 307:73–78

    Article  CAS  Google Scholar 

  4. Myung S, Maglia F, Park K, Yoon CS, Lamp P, Kim SJ, Sun YK (2017) Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives. ACS Energy Lett 2(1):196–223

    Article  CAS  Google Scholar 

  5. Zhao J, Wang Z, Guo H, Li XH (2017) Enhanced electrochemical properties of LiNiO2-based cathode materials by nanoscale manganese carbonate treatment. Appl Surf Sci 403:426–434

    Article  CAS  Google Scholar 

  6. Yoon S, Jung KN, Yeon SH, Jin CS, Shin KH (2012) Electrochemical properties of LiNi0.8Co0.15Al0.05O2–graphene composite as cathode materials for lithium-ion batteries. J Electroanal Chem 683:88–93

    Article  CAS  Google Scholar 

  7. Li X, Xie Z, Liu W, Ge W, Wang H, Qu M (2015) Effects of fluorine doping on structure, surface chemistry, and electrochemical performance of LiNi0.8Co0.15Al0.05O2. Electrochim Acta 174:1122–1130

    Article  CAS  Google Scholar 

  8. Ryu W, Lim S, Kim W, Kwon H (2014) 3-D dumbbell-like LiNi1/3Mn1/3Co1/3O2 cathode materials assembled with nano-building blocks for lithium-ion batteries. J Power Sources 257:186–191

    Article  CAS  Google Scholar 

  9. Li Y, Bai Y, Wu C, Qian J, Chen G, Liu L, Wang H, Zhou X, Wu F (2016) Three-dimensional fusiform hierarchical micro/nano Li1.2Ni0.2Mn0.6O2 with a preferred orientation (110) plane as a high energy cathode material for lithium-ion batteries. J Mater Chem A 4(16):5942–5951

    Article  CAS  Google Scholar 

  10. Zhang F, Ou X, Pan Q, Xiong X, Yang C (2017) The effect of composite organic acid (citric acid & tartaric acid) on microstructure and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 Li-rich layered oxides. J Power Sources 346:31–39

    Article  Google Scholar 

  11. Wu N, Wu H, Yuan W, Liu S, Liao J, Zhang Y (2015) Facile synthesis of one-dimensional LiNi0.8Co0.15Al0.05O2 microrods as advanced cathode materials for lithium ion batteries. J Mater Chem A 3(26):13648–13652

    Article  CAS  Google Scholar 

  12. Ohzuku T, Ueda A, Nagayama M (1993) Electrochemistry and structural chemistry of LiNiO2 (R3m) for 4 volt secondary lithium cells. J Electrochem Soc 140(7):1862–1870

    Article  CAS  Google Scholar 

  13. Zhang HZ, Liu C, Song DW, Zhang LQ, Bie LJ (2017) A new synthesis strategy towards enhancing the structure and cycle stabilities of the LiNi0.80Co0.15Al0.05O2 cathode material. J Mater Chem A 5(2):835–841

    Article  CAS  Google Scholar 

  14. Zheng J, Kan WH, Manthiram A (2015) Role of Mn content on the electrochemical properties of nickel-rich layered LiNi0.8–xCo0.1Mn0.1+xO2(0.0≤x≤0.08) cathodes for Lithium-ion batteries. ACS Appl Mater Intefaces 7(12):6926–6934

    Article  CAS  Google Scholar 

  15. Xiao L, Yang Y, Zhao Y, Ai X, Yang H, Cao Y (2008) Synthesis and electrochemical properties of submicron LiNi0.8Co0.2O2 by a polymer-pyrolysis method. Electrochim Acta 53(6):3007–3012

    Article  CAS  Google Scholar 

  16. Hu G, Liu W, Peng Z, Du K, Cao Y (2012) Synthesis and electrochemical properties of LiNi0.8Co0.15Al0.05O2 prepared from the precursor Ni0.8Co0.15Al0.05OOH. J Power Sources 198:258–263

    Article  CAS  Google Scholar 

  17. Du J, Liu Z, Huang Y, Gao Y, Han Y, Li W, Yang G (2005) Control of ZnO morphologies via surfactants assisted route in the subcritical water. J Cryst Growth 280(1-2):126–134

    Article  CAS  Google Scholar 

  18. Xiong Y, Washio I, Chen J, Cai H, Li ZY, Xia Y (2006) Poly (vinyl pyrrolidone): a dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions. Langmuir 22(20):8563–8570

    Article  CAS  Google Scholar 

  19. Ju SH, Jang HC, Kang YC (2007) Al-doped Ni-rich cathode powders prepared from the precursor powders with fine size and spherical shape. Electrochim Acta 52(25):7286–7292

    Article  CAS  Google Scholar 

  20. Hwang I, Lee CW, Kim JC, Yoon SH (2012) Particle size effect of Ni-rich cathode materials on lithium ion battery performance. Mater Res Bull 47(1):73–78

    Article  CAS  Google Scholar 

  21. Duan J, Wu C, Cao Y, Huang D, Du K, Peng Z, Hu GR (2017) Enhanced compacting density and cycling performance of Ni-riched electrode via building mono dispersed micron scaled morphology. J Alloy Compd 695:91–99

    Article  CAS  Google Scholar 

  22. Zhu L, Liu Y, Wu W, Wu X, Tang W, Wu Y (2015) Surface fluorinated LiNi0.8Co0.15Al0.05O2 as a positive electrode material for lithium ion batteries. J Mater Chem A 3(29):15156–15162

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the National Natural Science Foundation of China (50907056, 51602266), Sichuan Key Research and Development Program (2017GZ0109), and Sichuan Science and Technology Support Projects (2016GZ0273, 2016GZ0275).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Q., Gao, Y., Peng, J. et al. Effects of polyvinyl alcohol on the electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathode material. J Solid State Electrochem 22, 3807–3813 (2018). https://doi.org/10.1007/s10008-018-4085-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4085-x

Keywords

Navigation