Skip to main content
Log in

Faradaic efficiency of porous electrodeposits: an application to β-Ni(OH)2 films

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Electrodeposition is a common technique for coating metallic or semiconducting substrates. The growth of the layers occurs through faradaic processes in which charges are transferred across the substrate-electrolyte interface. Since more than one reaction can occur simultaneously, it is important to study the faradaic efficiency (ε) associated to the growth of the desired layers and relate it to other parameters in order to optimize the process. In this work, an indirect method to determine the faradaic efficiency of electrodeposits with porosity (p) is proposed. The method was satisfactorily applied to porous β-Ni(OH)2 films obtained by light-assisted anodic electrodeposition. These films were grown using different electrolyte concentrations (C) and temperatures (T). In this case, a direct dependence of p and ε with C and T was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are not publicly available due to technical or time limitations but are available from the corresponding author on reasonable request.

References

  1. Green TA, Liew M-J, Roy S (2003) Electrodeposition of gold from a thiosulfate-sulfite bath for microelectronic applications. J Electrochem Soc 150(3):C104–C110

    Article  CAS  Google Scholar 

  2. Andricacos PC (1999) Copper on-chip interconnections, a breakthrough in electrodeposition to make better chips. Electrochem Soc Interface 8:32–37

    CAS  Google Scholar 

  3. Rousse C, Beaufils S, Fricoteaux P (2013) Electrodeposition of Cu–Zn thin films from room temperature ionic liquid. Electrochim Acta 107:624–631

    Article  CAS  Google Scholar 

  4. Zhao F, Franz S, Vicenzo A, Bestetti M, Venturini F, Cavallotti PL (2013) Electrodeposition of Fe–Ga thin films from eutectic-based ionic liquid. Electrochim Acta 114:878–888

    Article  CAS  Google Scholar 

  5. Pauporté T, Lincot D (2000) Electrodeposition of semiconductors for optoelectronic devices: results on zinc oxide. Electrochim Acta 45(20):3345–3353

    Article  Google Scholar 

  6. Li J, Jiang L, Wang B, Liu F, Yang J, Tang D, Lai Y, Li J (2013) Electrodeposition and characterization of copper bismuth selenide semiconductor thin films. Electrochim Acta 87:153–157

    Article  CAS  Google Scholar 

  7. Koussi-Daoud S, Majerus O, Schaming D, Pauporté T (2016) Electrodeposition of NiO films and inverse opal organized layers from polar aprotic solvent-based electrolyte. Electrochim Acta 219:638–646

    Article  CAS  Google Scholar 

  8. Brandt IS, Tumelero MA, Pelegrini S, Zangari G, Pasa AA (2017) Electrodeposition of Cu2O: growth, properties, and applications. J Solid State Electrochem 21(7):1999–2020

    Article  CAS  Google Scholar 

  9. Dalavi DS, Suryavanshi MJ, Mali SS, Patil DS, Patil PS (2012) Efficient maximization of coloration by modification in morphology of electrodeposited NiO thin films prepared with different surfactants. J Solid State Electrochem 16(1):253–263

    Article  CAS  Google Scholar 

  10. Quispe LT, Cid CCP, Mello A, et al (2017) Anodic synthesis of β-Ni(OH)2 thin films on Si(100). ECS J Solid State Sci Technol 6(7):N64–N69

  11. Wen J, Li S, Chen T, Li B, Xiong L, Guo Y, Fang G (2017) Porous nanosheet network architecture of CoP@Ni(OH)2 composites for high performance supercapacitors. Electrochim Acta 258:266–273

    Article  CAS  Google Scholar 

  12. Wang F, Chen L, Deng C, Ye H, Jiang X, Yang G (2014) Porous tin film synthesized by electrodeposition and the electrochemical performance for lithium-ion batteries. Electrochim Acta 149:330–336

    Article  CAS  Google Scholar 

  13. Akafuah N, Poozesh S, Salaimeh A, Patrick G, Lawler K, Saito K (2016) Evolution of the automotive body coating process—a review. Coatings 6:24

    Article  CAS  Google Scholar 

  14. Liu Y, Liang Y, Bliznakov S et al (2010) Improving copper electrodeposition in the microelectronics industry. IEEE Trans Compon Packag Technol 33(1):127–137

    Article  CAS  Google Scholar 

  15. Pereira SV, Bertolino FA, Fernández-Baldo MA, Messina GA, Salinas E, Sanz MI, Raba J (2011) A microfluidic device based on a screen-printed carbon electrode with electrodeposited gold nanoparticles for the detection of IgG anti-Trypanosoma cruzi antibodies. Analyst 136(22):4745–4751

    Article  CAS  PubMed  Google Scholar 

  16. Kozicki M, Maroufkhani P, Mitkova M (2003) Flow regulation in microchannels via electrical alteration of surface properties. Superlattice Microst 34(3-6):467–473

    Article  CAS  Google Scholar 

  17. Ehl RG, Ihde AJ (1954) Faraday’s electrochemical laws and the determination of equivalent weights. J Chem Educ 31(5):226–232

    Article  CAS  Google Scholar 

  18. Strong FC (1961) Faraday’s laws in one equation. J Chem Educ 38(2):98

    Article  Google Scholar 

  19. Saitou M (2011) Temperature-dependence of deposition rate and current efficiency in platinum electrodeposition at a fixed average current density. Open Electrochem J 3(1):1–5

    Article  CAS  Google Scholar 

  20. Qingfeng L (1991) Influence of substrates on the electrochemical deposition and dissolution of aluminum in NaAlCl4 melts. J Electrochem Soc 138(3):763–766

    Article  Google Scholar 

  21. Chen X, Xiang Y, Vlassak JJ (2006) Novel technique for measuring the mechanical properties of porous materials by nanoindentation. J Mater Res 21(03):715–724

    Article  CAS  Google Scholar 

  22. Okazaki K, Nagata K (1973) Effects of grain size and porosity on electrical and optical properties of PLZT ceramics. J Am Ceram Soc 56(2):82–86

    Article  CAS  Google Scholar 

  23. Ha T-J, Park H-H, Jung S-Y, Yoon SJ, Kim JS, Jang HW (2010) Effect of porosity on the Seebeck coefficient of mesoporous TiO2 thin films. Thin Solid Films 518(24):7196–7198

    Article  CAS  Google Scholar 

  24. Alam MT, Pulavarthy RA, Bielefeld J, King SW, Haque MA (2014) Thermal conductivity measurement of low-k dielectric films: effect of porosity and density. J Electron Mater 43(3):746–754

    Article  CAS  Google Scholar 

  25. Park N-W, Lee W-Y, Park T-H, Kim DJ, Cho SH, Lee SY, Lee SK (2015) Temperature-dependent thermal conductivity of nanoporous Bi thin films by controlling pore size and porosity. J Alloys Compd 639:289–295

    Article  CAS  Google Scholar 

  26. Vorobiev YV, Horley PP, Hernández-Borja J, Esparza-Ponce HE, Ramírez-Bon R, Vorobiev P, Pérez C, González-Hernández J (2012) The effects of porosity on optical properties of semiconductor chalcogenide films obtained by the chemical bath deposition. Nanoscale Res Lett 7(1):483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Heymann JAW, Hayles M, Gestmann I, Giannuzzi LA, Lich B, Subramaniam S (2006) Site-specific 3D imaging of cells and tissues with a dual beam microscope. J Struct Biol 155(1):63–73

    Article  PubMed  PubMed Central  Google Scholar 

  28. Groeber MA, Haley BK, Uchic MD, Dimiduk DM, Ghosh S (2006) 3D reconstruction and characterization of polycrystalline microstructures using a FIB-SEM system. Mater Charact 57(4-5):259–273

    Article  CAS  Google Scholar 

  29. Wilson JR, Kobsiriphat W, Mendoza R, Chen HY, Hiller JM, Miller DJ, Thornton K, Voorhees PW, Adler SB, Barnett SA (2006) Three-dimensional reconstruction of a solid-oxide fuel-cell anode. Nat Mater 5(7):541–544

    Article  CAS  PubMed  Google Scholar 

  30. Mangipudi KR, Radisch V, Holzer L, Volkert CA (2016) A FIB-nanotomography method for accurate 3D reconstruction of open nanoporous structures. Ultramicroscopy 163:38–47

    Article  CAS  PubMed  Google Scholar 

  31. Phelan R, Holmes JD, Petkov N (2012) Application of serial sectioning FIB/SEM tomography in the comprehensive analysis of arrays of metal nanotubes. J Microsc 246(1):33–42

    Article  CAS  PubMed  Google Scholar 

  32. Chen B, Xia Z, Lu K (2013) Understanding sintering characteristics of ZnO nanoparticles by FIB-SEM three-dimensional analysis. J Eur Ceram Soc 33(13-14):2499–2507

    Article  CAS  Google Scholar 

  33. CODATA. Faraday constant. https://physics.nist.gov/cgi-bin/cuu/Value?f. Accessed 10 April 2013

  34. Kazimirov VY, Smirnov MB, Bourgeois L, Guerlou-Demourgues L, Servant L, Balagurov AM, Natkaniec I, Khasanova NR, Antipov EV (2010) Atomic structure and lattice dynamics of Ni and Mg hydroxides. Solid State Ionics 181(39-40):1764–1770

    Article  CAS  Google Scholar 

  35. Taylor JR (1997) An introduction to error analysis: the study of uncertainties in physical measurements. University Science Books, California

    Google Scholar 

  36. CIBC (2016) SCI: Seg3D Software. http://www.seg3d.org

  37. Littauer EL, Momyer WR, Tsai KC (1977) Current efficiency in the lithium-water battery. J Power Sources 2(2):163–176

    Article  CAS  Google Scholar 

  38. Lv W, Zhang R, Gao P, Lei L (2014) Studies on the faradaic efficiency for electrochemical reduction of carbon dioxide to formate on tin electrode. J Power Sources 253:276–281

    Article  CAS  Google Scholar 

  39. Naor A, Eliaz N, Gileadi E (2009) Electrodeposition of rhenium-nickel alloys from aqueous solutions. Electrochim Acta 54(25):6028–6035

    Article  CAS  Google Scholar 

  40. Wu W, Eliaz N, Gileadi E (2014) The effects of pH and temperature on electrodeposition of re-Ir-Ni coatings from aqueous solutions. J Electrochem Soc 162(1):D20–D26

    Article  CAS  Google Scholar 

  41. Aerts T, Dimogerontakis T, De Graeve I et al (2007) Influence of the anodizing temperature on the porosity and the mechanical properties of the porous anodic oxide film. Surf Coat Technol 201(16-17):7310–7317

    Article  CAS  Google Scholar 

  42. Voon CH, Derman MN (2012) Effect of electrolyte concentration on the growth of porous anodic aluminium oxide (AAO) on Al-Mn alloys. Adv Mater Res 626:610–614

    Article  CAS  Google Scholar 

  43. Tench D (1983) Electrodeposition of conducting transition metal oxide/hydroxide films from aqueous solution. J Electrochem Soc 130(4):869–872

    Article  CAS  Google Scholar 

  44. Wu MS, Yang CH (2007) Electrochromic properties of intercrossing nickel oxide nanoflakes synthesized by electrochemically anodic deposition. Appl Phys Lett 91(3):033109

    Article  CAS  Google Scholar 

  45. Conway BE, Bourgault PL (1959) The electrochemical behavior of the nickel-nickel oxide electrode: part I. Kinetics of self-discharge. Can J Chem 37(1):292–307

    Article  CAS  Google Scholar 

  46. Bourgault PL, Conway BE (1960) The electrochemical behavior of the nickel oxide electrode: part II. Quasi-equilibrium behavior. Can J Chem 38(9):1557–1575

    Article  CAS  Google Scholar 

  47. Chen L, Dong X, Wang Y, Xia Y (2016) Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide. Nat Commun 7:11741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Suen N-T, Hung S-F, Quan Q, Zhang N, Xu YJ, Chen HM (2017) Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev 46(2):337–365

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the Brazilian agencies CAPES, CNPQ, FINEP/CT-INFRA, and FAPESC for supporting this research. The authors thank also Dr. Daniel G. Stroppa and Dr. Enrique Carbó-Argibay from the International Iberian Nanotechnology Laboratory for supporting during the measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Pasa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quispe, L.T., Brandt, I.S. & Pasa, A.A. Faradaic efficiency of porous electrodeposits: an application to β-Ni(OH)2 films. J Solid State Electrochem 22, 3025–3033 (2018). https://doi.org/10.1007/s10008-018-4012-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4012-1

Keywords

Navigation