Skip to main content

Advertisement

Log in

Lithium garnet based free-standing solid polymer composite membrane for rechargeable lithium battery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Electrolytes with high lithium-ion conductivity, better mechanical strength and large electrochemical window are essential for the realization of high-energy density lithium batteries. Polymer electrolytes are gaining interest due to their inherent flexibility and nonflammability over conventional liquid electrolytes. In this work, lithium garnet composite polymer electrolyte membrane (GCPEM) consisting of large molecular weight (Wavg ~ 5 × 106) polyethylene oxide (PEO) complexed with lithium perchlorate (LiClO4) and lithium garnet oxide Li6.28Al0.24La3Zr2O12 (Al-LLZO) is prepared by solution-casting method. Significant improvement in Li+ conductivity for Al-LLZO containing GCPEM is observed compared with the Al-LLZO free polymer membrane. Maximized room temperature (30 °C) Li+ conductivity of 4.40 × 10−4 S cm−1 and wide electrochemical window (4.5 V) is observed for PEO8/LiClO4 + 20 wt% Al-LLZO (GCPEM-20) membrane. The fabricated cell with LiCoO2 as cathode, metallic lithium as anode and GCPEM-20 as electrolyte membrane delivers an initial charge/discharge capacity of 146 mAh g−1/142 mAh g−1 at 25 °C with 0.06 C-rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Choi JH, Lee CH, Yu JH, Doh CH, Lee SM (2015) Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li7La3Zr2O12 into a polyethylene oxide matrix. J Power Sources 274:458–463

    Article  CAS  Google Scholar 

  2. Inaguma Y, Liquan C, Itoh M, Nakamura T, Uchida T, Ikuta H, Wakihara M (1993) High ionic conductivity in lithium lanthanum titanate. Solid State Commun 86(10):689–693

    Article  CAS  Google Scholar 

  3. Fu J (1997) Fast Li+ ion conduction in Li2O-Al2O3-TiO2-SiO2-P2O2 glass-ceramics. J Am Chem Soc 80(7):1901–1903

    CAS  Google Scholar 

  4. Kanno R, Murayama M (2001) Lithium ionic conductor Thio-LISICON: the Li2SGeS2P2S5 system. J Electrochem Soc 148(7):A742–A746

    Article  CAS  Google Scholar 

  5. Hayashi A, Hama S, Minami T, Tatsumisago M (2003) Formation of superionic crystals from mechanically milled Li2S–P2S5 glasses. Electrochem Commun 5(2):111–114

    Article  CAS  Google Scholar 

  6. Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Mitsui A (2011) A lithium superionic conductor. Nat Mater 10(9):682–686

    Article  CAS  PubMed  Google Scholar 

  7. Agrawal RC, Pandey GP (2008) Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. J Phys D Appl Phys 41(22):223001

    Article  CAS  Google Scholar 

  8. Tambelli CC, Bloise AC, Rosario AV, Pereira EC, Magon CJ, Donoso JP (2002) Characterisation of PEO–Al2O3 composite polymer electrolytes. Electrochim Acta 47(11):1677–1682

    Article  CAS  Google Scholar 

  9. Masoud EM, El-Bellihi AA, Bayoumy WA, Mousa MA (2013) Effect of LiAlO2 nanoparticle filler concentration on the electrical properties of PEO–LiClO4 composite. Mater Res Bull 48(3):1148–1154

    Article  CAS  Google Scholar 

  10. Zhang XW, Wang C, Appleby AJ, Little FE (2002) Characteristics of lithium-ion-conducting composite polymer-glass secondary cell electrolytes. J Power Sources 112(1):209–215

    Article  CAS  Google Scholar 

  11. Kesavan K, Mathew CM, Rajendran S, Subbu C, Ulaganathan M (2015) Solid polymer blend electrolyte based on poly (ethylene oxide) and poly (vinyl pyrrolidone) for lithium secondary batteries. Braz J Phys 45(1):19–27

    Article  CAS  Google Scholar 

  12. Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394(6692):456–458

    Article  CAS  Google Scholar 

  13. Wieczorek W, Such K, Przyłuski J, Floriańczyk Z (1991) Blend-based and composite polymer solid electrolytes. Synth Met 45(3):373–383

    Article  CAS  Google Scholar 

  14. Fullerton-Shirey SK, Maranas JK (2010) Structure and mobility of PEO/LiClO4 solid polymer electrolytes filled with Al2O3 nanoparticles. J Phys Chem C 114(20):9196–9206

    Article  CAS  Google Scholar 

  15. Tang Z, Wang J, Chen Q, He W, Shen C, Mao XX, Zhang J (2007) A novel PEO-based composite polymer electrolyte with absorptive glass mat for li-ion batteries. Electrochim Acta 52(24):6638–6643

    Article  CAS  Google Scholar 

  16. Zheng J, Tang M, Hu YY (2016) Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew Chem 128(40):12726–12730

    Article  Google Scholar 

  17. Yue L, Ma J, Zhang J, Zhao J, Dong S, Liu Z, Chen L (2016) All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Mater 5:139–164

    Article  Google Scholar 

  18. Zheng J, Tang M, Hu YY (2016) Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew Chem Int Ed 55(40):12538–12542

    Article  CAS  Google Scholar 

  19. Buvana P, Vishista K, Shanmukaraj D, Murugan R (2017) Lithium garnet oxide dispersed polymer composite membrane for rechargeable lithium batteries. Ionics 23(3):541–548

    Article  CAS  Google Scholar 

  20. Deviannapoorani C, Ramakumar S, Janani N, Murugan R (2015) Synthesis of lithium garnets from La2Zr2O7 pyrochlore. Solid State Ionics 283:123–130

    Article  CAS  Google Scholar 

  21. Dey A, Karan S, De SK (2009) Effect of nanofillers on thermal and transport properties of potassium iodide–polyethylene oxide solid polymer electrolyte. Solid State Commun 149(31–32):1282–1287

    Article  CAS  Google Scholar 

  22. Dhivya L, Karthik K, Ramakumar S, Murugan R (2015) Facile synthesis of high lithium ion conductive cubic phase lithium garnets for electrochemical energy storage devices. RSC Adv 5(116):96042–96051

    Article  CAS  Google Scholar 

  23. Fahmi EM, Ahmad A, Hamzah H, Rahman MYA (2013) Preparation and characterization of PEO-NiO-LiCF3SO3 composite polymer electrolyte. Int J Electroact Mater 1(1):2–8

    Google Scholar 

  24. Masoud EM, El-Bellihi AA, Bayoumy WA, Mousa MA (2013) Organic–inorganic composite polymer electrolyte based on PEO–LiClO4 and nano-Al2O3 filler for lithium polymer batteries: dielectric and transport properties. J Alloys Compd 575:223–228

    Article  CAS  Google Scholar 

  25. Xi J, Qiu X, Cui M, Tang X, Zhu W, Chen L (2006) Enhanced electrochemical properties of PEO-based composite polymer electrolyte with shape-selective molecular sieves. J Power Sources 156(2):581–588

    Article  CAS  Google Scholar 

  26. Keller M, Appetecchi GB, Kim GT, Sharova V, Schneider M, Schuhmacher J, Roters A, Passerini S (2017) Electrochemical performance of a solvent-free hybrid ceramic-polymer electrolyte based on Li7La3Zr2O12 in P(EO)15LiTFSI. J Power Sources 353:287–297

    Article  CAS  Google Scholar 

  27. Chu PP, Reddy MJ (2003) Sm2O3 composite PEO solid polymer electrolyte. J Power Sources 115(2):288–294

    Article  CAS  Google Scholar 

  28. Fahmi EM, Ahmad A, Nazeri NNM, Hamzah H, Razali H, Rahman MYA (2012) Effect of LiBF4 salt concentration on the properties of poly (ethylene oxide)-based composite polymer electrolyte. Int J Electrochem Sci 7:5798–5804

    CAS  Google Scholar 

  29. Bruce PG, Vincent CA (1987) Steady state current flow in solid binary electrolyte cells. J Electroanal Chem Interfacial Electrochem 225(1-2):1–17

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Ministry of Heavy Industries, Government of India (No. 7/1/2013-AEI) and Applied Materials India Pvt. Ltd. for establishing laboratory facilities to carry out part of this work. The authors also acknowledge SERB-DST, New Delhi, India, for the support (EMR/2017/000417). One of the authors (KK) would like to acknowledge UGC-SRF New Delhi (23/12/2012(ii) EU-V), India, towards the financial support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramaswamy Murugan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthik, K., Murugan, R. Lithium garnet based free-standing solid polymer composite membrane for rechargeable lithium battery. J Solid State Electrochem 22, 2989–2998 (2018). https://doi.org/10.1007/s10008-018-4010-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4010-3

Keywords

Navigation