Skip to main content

Advertisement

Log in

In situ X-ray absorption fine structure studies of amorphous and crystalline polyoxovanadate cluster cathodes for lithium batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Amorphous and crystalline MetfV10 electrodes for lithium ion batteries were prepared by mixing MetfV10 with different binders: polyvinylidenefluoride (PVDF) or polytetrafluoroethylene (PTFE). The amorphous MetfV10 cathode demonstrates a higher specific capacity than the crystalline cathode. The reaction mechanism was studied using in situ X-ray absorption fine structure (XAFS) and impedance measurements. The X-ray absorption near-edge structure (XANES) results exhibited a 10-electron reduction per the formula of MetfV10 during discharge, resulting in a large capacity. Extended X-ray absorption fine structure (EXAFS) analyses suggested a slight expansion in the molecular size of MetfV10. The impedance measurements reveal that an increase of discharge capacities for the amorphous cathode is due to lower resistance than in the crystalline cathode. This study presents a rational selection of amorphous or crystalline cathode materials for high power and high energy density lithium batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chao D, Xia X, Liu J, Fan Z, Ng CF, Lin J, Zhang H, Shen ZX, Fan HJ (2014) A V2O5/conductive-polymer core/shell nanobelt array on three-dimensional graphite foam: a high-rate, ultrastable, and freestanding cathode for lithium-ion batteries. Adv Mater 26(33):5794–5800

    Article  CAS  PubMed  Google Scholar 

  2. Chen X, Zhu H, Chen YC, Shang Y, Cao A, Hu L, Rubloff GW (2012) MWCNT/V2O5 core/shell sponge for high areal capacity and power density li-ion cathodes. ACS Nano 6(9):7948–7955

    Article  CAS  PubMed  Google Scholar 

  3. Mai L, An Q, Wei Q, Fei J, Zhang P, Xu X, Zhao Y, Yan M, Wen W, Xu L (2014) Nanoflakes-assembled three-dimensional hollow-porous V2O5 as lithium storage cathodes with high-rate capacity. Small 10(15):3032–3037

    Article  CAS  PubMed  Google Scholar 

  4. Tan HT, Rui X, Sun W, Yan Q, Lim TM (2015) Vanadium-based nanostructure materials for secondary lithium battery applications. Nano 7(35):14595–14607

    CAS  Google Scholar 

  5. Fang Y, Xiao L, Ai X, Cao Y, Yang H (2015) Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries. Adv Mater 27(39):5895–5900

    Article  CAS  PubMed  Google Scholar 

  6. Tepavcevic S, Xiong H, Stamenkovic VR, Zuo X, Balasubramanian M, Prakapenka VB, Johnson CS, Rajh T (2012) Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries. ACS Nano 6(1):530–538

    Article  CAS  PubMed  Google Scholar 

  7. Ghosh A, Ra EJ, Jin M, Jeong HK, Kim TH, Biswas C, Lee YH (2011) High pseudocapacitance from ultrathin V2O5 films electrodeposited on self-standing carbon-nanofiber paper. Adv Funct Mater 21(13):2541–2547

    Article  CAS  Google Scholar 

  8. Yu MH, Zeng Y, Han Y, Cheng XY, Zhao WX, Liang CL, Tong YX, Tang HL, Lu XH (2015) Valence-optimized vanadium oxide supercapacitor electrodes exhibit ultrahigh capacitance and super-long cyclic durability of 100000 cycles. Adv Funct Mater 25(23):3534–3540

    Article  CAS  Google Scholar 

  9. Li YW, Liu CZ, Xie ZP, Yao JH, Cao GZ (2017) Superior sodium storage performance of additive-free V2O5 thin film electrodes. J Mater Chem A 5(32):16590–16594

    Article  CAS  Google Scholar 

  10. Wang H, Isobe J, Shimizu T, Matsumura D, Ina T, Yoshikawa H (2017) Preparation of γ-LiV2 O5 from polyoxovanadate cluster Li7[V15O36(CO3)] as a high-performance cathode material and its reaction mechanism revealed by operando XAFS. J Power Sources 360:150–156

    Article  CAS  Google Scholar 

  11. Mai L, Wei Q, An Q, Tian X, Zhao Y, Xu X, Xu L, Chang L, Zhang Q (2013) Nanoscroll buffered hybrid nanostructural VO2 (B) cathodes for high-rate and long-life lithium storage. Adv Mater 25(21):2969–2973

    Article  CAS  PubMed  Google Scholar 

  12. Sarkar S, Bhowmik A, Dixit Bharadwaj M, Mitra S (2013) Phase transition, electrochemistry, and structural studies of high rate LixV3O8 cathode with Nanoplate morphology. J Electrochem Soc 161(1):A14–A22

    Article  CAS  Google Scholar 

  13. Giorgetti M, Passerini S, Smyrl WH, Mukerjee S, Yang XQ, McBreen J (1999) In situ X-ray absorption spectroscopy characterization of V2O5 xerogel cathodes upon lithium intercalation. J Electrochem Soc 146(7):2387–2392

    Article  CAS  Google Scholar 

  14. Giorgetti M, Berrettoni M, Smyrl WH (2007) Doped V2O5-based cathode materials: where does the doping metal go? An X-ray absorption spectroscopy study. Chem Mater 19(24):5991–6000

    Article  CAS  Google Scholar 

  15. Herrmann S, Ritchie C, Streb C (2015) Polyoxometalate-conductive polymer composites for energy conversion, energy storage and nanostructured sensors. Dalton Trans 44(16):7092–7104

    Article  CAS  PubMed  Google Scholar 

  16. Sha J, Zhu P, Yang X, Li X, Li X, Yue M, Zhou K (2017) Polyoxometalates templated metal Ag-carbene frameworks anodic material for lithium-ion batteries. Inorgnic Chemistry 56(19):11998–12002

    Article  CAS  Google Scholar 

  17. Hartung S, Bucher N, Chen HY, Al-Oweini R, Sreejith S, Borah P, Zhao Y, Kortz U, Stimming U, Hoster HE, Srinivasan M (2015) Vanadium-based polyoxometalate as new material for sodium-ion battery anodes. J Power Sources 288:270–277

    Article  CAS  Google Scholar 

  18. Liu J, Chen Z, Chen S, Zhang B, Wang J, Wang H, Tian B, Chen M, Fan X, Huang Y, Sum TC, Lin J, Shen ZX (2017) “Electron/ion sponge”-like V-based polyoxometalate: toward high-performance cathode for rechargeable sodium ion batteries. ACS Nano 11(7):6911–6920

    Article  CAS  PubMed  Google Scholar 

  19. Xiong H, Slater MD, Balasubramanian M, Johnson CS, Rajh T (2011) Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. The Journal of Physical Chemistry Letters 2(20):2560–2565

    Article  CAS  Google Scholar 

  20. Uchaker E, Zheng YZ, Li S, Candelaria SL, Hu S, Cao GZ (2014) Better than crystalline: amorphous vanadium oxide for sodium-ion batteries. J Mater Chem A 2(43):18208–18214

    Article  CAS  Google Scholar 

  21. Liu S, Tong Z, Zhao J, Liu X, Wang J, Ma X, Chi C, Yang Y, Liu X, Li Y (2016) Rational selection of amorphous or crystalline V2O5 cathode for sodium-ion batteries. Phys Chem Chem Phys 18(36):25645–25654

    Article  CAS  PubMed  Google Scholar 

  22. Sanchez-Lombardo I, Sanchez-Lara E, Perez-Benitez A, Mendoza A, Bernes S, Gonzalez-Vergara E (2014) Synthesis of metforminium(2+) decavanadates—crystal structures and solid-state characterization. Eur J Inorg Chem 2014(27):4581–4588

    Article  CAS  Google Scholar 

  23. Wang H, Hamanaka S, Yokoyama T, Yoshikawa H, Awaga K (2011) In-situ XAFS studies of Mn12 molecular-cluster batteries: super-reduced Mn12 clusters in solid-state electrochemistry. Chemistry-Asian Journal 6(4):1074–1079

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The synchrotron radiation experiments were performed at the Japan Atomic Energy Agency (JAEA) beamline BL14B1 in SPring-8 with the approval of JASRI (Proposal Nos. 2015B3615, 2016B3634, and 2017A3634). They were also performed under the Shared Use Program of JAEA Facilities (Proposal Nos. 2015B-E10, 2016B-E02, and 2017A-E01), with the approval of the Nanotechnology Platform project supported by the Ministry of Education, Culture, Sports, Science and Technology (Proposal Nos. A-15-AE-0032, A-16-AE-0015, and A-17-AE-0001).

Funding

This work was financially supported by JSPS KAKENHI Grant Nos. 17H03048, JP16KT0062, JP15K13769, JP15H00935, and JP26288034 for H.Y. This work was also supported by the JSPS Core-to-Core Program A-Advanced Research Networks. Financial support of the Research Grant of Tokuyama Science Foundation and the Grant for Basic Science Research Projects of the Sumitomo foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirofumi Yoshikawa.

Electronic supplementary material

ESM 1

(DOCX 2208 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Isobe, J., Matsumura, D. et al. In situ X-ray absorption fine structure studies of amorphous and crystalline polyoxovanadate cluster cathodes for lithium batteries. J Solid State Electrochem 22, 2067–2071 (2018). https://doi.org/10.1007/s10008-018-3920-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-3920-4

Keywords

Navigation