Skip to main content
Log in

Structural and electrochemical properties of TiFe alloys synthesized by ball milling for hydrogen storage

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The binary TiFe alloy was synthesized by mechanical alloying (MA) under argon atmosphere at room temperature. The effect of ball to powder weight ratio on the microstructures was characterized by X-ray diffraction (XRD). The effect of milling time on the electrochemical and activation properties was investigated by scanning electron microscope (SEM), galvanostatic charging and discharging, constant potential discharge, and potentiodynamic polarization techniques. Relationships between electrochemical properties, such as polarization, variation of electrochemical discharge capacity, \( \frac{D_{\mathrm{H}}}{a^2} \) ratio exchange current density, and Nernst potential and alloy compositions were evaluated. XRD results showed that with increasing ball to powder weight ratio, the amorphization process is accelerating and powders milled with a ratio of 1:8 have the highest conversion rate to TiFe. SEM observations reveal that particles show cleavage fracture morphology and size distribution is generally normalized. TiFe milled during 40 h was easily activated within 5 cycles and showed the best discharge capacity equal to 147 mAh g−1. A good cycling was observed after 20 cycles at ambient temperature for the alloy milled for 30 h. A correlation between alloy composition, \( \frac{D_{\mathrm{H}}}{a^2} \) report, exchange current density, and Nernst potential on one hand and the variation of the electrochemical discharge capacity during cycling for different milling times on the other hand was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Khaldi C, Boussami S, Tliha M, Azizi S, Fenineche N, ElKedim O, Mathlouthi H, Lamloumi J (2013) The effect of the temperature on the electrochemical properties of the hydrogen storage alloy for nickel–metal hydride accumulators. J Alloys Compd 574:59–66

    Article  CAS  Google Scholar 

  2. Abdul Wahab M, Jia Y, Yang D, Zhao H, Yao X (2013) Enhanced hydrogen desorption from Mg(BH4)2 by combining nanoconfinement and a Ni catalyst. J Mater Chem A 1:3471–3478

    Article  CAS  Google Scholar 

  3. Schlapbach L, Zuttel A (2001) Hydrogen-storage materials for mobile applications. Nature 414:353–358

    Article  CAS  Google Scholar 

  4. Zhu J, Ma L, Liang F, Wang L (2015) Effect of Sc substitution on hydrogen storage properties of Ti–V–Cr–Mn alloys. Int J Hydrog Energy 40:6860–6865

    Article  CAS  Google Scholar 

  5. Kadir K, Sakai T, Uehara I (1999) Structural investigation and hydrogen capacity of YMg2Ni9 and (Y0.5Ca0.5)(MgCa)Ni9: new phases in the AB2C9 system isostructural with LaMg2Ni9. J Alloys Compd 287:264–270

    Article  CAS  Google Scholar 

  6. Kadir K, Kuriyama N, Sakai T, Uehara I, Eriksson L (1999) Structural investigation and hydrogen capacity of CaMg2Ni9: a new phase in the AB2C9 system isostructural with LaMg2Ni9. J Alloys Compd 284:145–154

    Article  CAS  Google Scholar 

  7. Baddour-Hadjcan R, Meyer L, Pereira-Ramos JP, Latroche M, Percheron-Guégan A (2001) An electrochemical study of new La1−xCexY2Ni9 (0≤x≤1) hydrogen storage alloys. Electrochim Acta 46:2385–2393

    Article  Google Scholar 

  8. Mathlouthi H, Lamloumi J, Latroche M, Percheron-Guégan A (1997) Study of poly-substituted intermetallic hydrides: electrochemical applications. Ann Chim Sci Mater 22:241–244

    CAS  Google Scholar 

  9. Sakintuna B, Lamari-Darkrim F, Hirscher M (2007) Metal hydride materials for solid hydrogen storage: a review. Int J Hydrog Energy 32:1121–1140

    Article  CAS  Google Scholar 

  10. Zhang X, Sun D, Yin W, Chai Y, Zhao M (2006) Crystallographic and electrochemical characteristics of La0.7Mg0.3Ni3.5-x(Al0.5Mo0.5)x (x=0–0.8) hydrogen storage alloys. J Power Sources 154:290–297

    Article  CAS  Google Scholar 

  11. Zhang XB, Sun DZ, Yin WY, Chai YJ, Zhao MS (2005) Effect of Mn content on the structure and electrochemical characteristics of La0.7Mg0.3Ni2.975-xCo0.525Mnx (x=0–0.4) hydrogen storage alloys. Electrochim Acta 50:2911–2918

    Article  CAS  Google Scholar 

  12. Zhang XB, Sun DZ, Yin WY, Chai YJ, Zhao MS (2005) Crystallographic and electrochemical characteristics of La0.7Mg0.3Ni5.0-x(Al0.5Mo0.5)x hydrogen-storage alloys. Chem Phys Chem 6:520–525

    Article  CAS  Google Scholar 

  13. Qu H, Du J, Pu C, Niu Y, Huang T, Li Z, Lou Y, Wu Z (2015) Effects of Co introduction on hydrogen storage properties of Ti–Fe–Mn alloys. Int J Hydogen Energy 40:2729–2735

    Article  CAS  Google Scholar 

  14. Emami H, Edalati K, Matsuda J, Akiba E, Horita Z (2015) Hydrogen storage performance of TiFe after processing by ball milling. Acta Mater 88:190–195

    Article  CAS  Google Scholar 

  15. Jain P, Gosselin C, Huot J (2015) Effect of Zr, Ni and Zr7Ni10 alloy on hydrogen storage characteristics of TiFe alloy. Int J Hydrog Energy 40:16921–16927

    Article  CAS  Google Scholar 

  16. Ćirić KD, Kocjan A, Gradišek A, Koteski VJ, Kalijadis AM, Ivanovski VN, Laušević ZV, Stojić DL (2012) A study on crystal structure, bonding and hydriding properties of Ti–Fe–Ni intermetallics—behind substitution of iron by nickel. Inter J Hydrogen Energy 37:8408–8417

    Article  Google Scholar 

  17. Davids MW, Lototskyy M, Nechaev A, Naidoo Q, Williams M, Klochko Y (2011) Surface modification of TiFe hydrogen storage alloy by metal-organic chemical vapour deposition of palladium. Inter J Hydrogen Energy 36:9743–9750

    Article  CAS  Google Scholar 

  18. Abrashev B, Spassov T, Bliznakov S, Popov A (2010) Microstructure and electrochemical hydriding/dehydriding properties of ball-milled TiFe-based alloys. Int J Hydrog Energy 35:6332–6337

    Article  CAS  Google Scholar 

  19. Kumar S, Tiwari GP, Sonak S, Jain U, Krishnamurthy N (2014) High performance FeTi-3.1 mass % V alloy for on board hydrogen storage solution. Energy 75:520–524

    Article  CAS  Google Scholar 

  20. Jankowska E, Jurczyk M (2004) Electrochemical properties of sealed Ni–MH batteries using nanocrystalline TiFe-type anodes. J Alloys Compd 372:L9–L12

    Article  CAS  Google Scholar 

  21. Jankowska E, Jurczyk M (2002) Electrochemical behaviour of high-energy ball-milled TiFe alloy. J Alloys Compd 346:L1–L3

    Article  CAS  Google Scholar 

  22. Szajek A, Jurczyk M, Jankoowska E (2003) The electronic and electrochemical properties of the TiFe-based alloys. J Alloys Compd 348:285–292

    Article  CAS  Google Scholar 

  23. Lv P, Huot J (2016) Hydrogen storage properties of Ti0.95FeZr0.05, TiFe0.95Zr0.05 and TiFeZr0.05 alloys. Int J Hydrog Energy 41:22128–22133

    Article  CAS  Google Scholar 

  24. Jain P, Gosselin C, Skryabina N, Fruchart D, Huot J (2015) Hydrogenation properties of TiFe with Zr7Ni10 alloy as additive. J Alloys Compd 636:375–380

    Article  CAS  Google Scholar 

  25. Zadorozhnyy VY, Klyamkin SN, Zadorozhnyy MY, Gorshenkov MV, Kaloshkin SD (2014) Mechanical alloying of nanocrystalline intermetallic compound TiFe doped with sulfur and magnesium. J Alloys Compd 615:S569–S572

    Article  CAS  Google Scholar 

  26. Jurczyk M (2004) Nanostructured electrode materials for Ni-MHx batteries prepared by mechanical alloying. J Mater Sci 39:5271–5274

    Article  CAS  Google Scholar 

  27. Percheron-Guégan A, Latroche M (2011) Influence of the addition of vanadium on the hydrogenation properties of the compounds TiFe0.9Vx and TiFe0.8Mn0.1Vx (x=0, 0.05 and 0.1). J Alloys Compd 509:5562–5566

    Article  Google Scholar 

  28. Miyamura H, Takada M, Kikuchi S (2005) Characteristics of hydride electrodes using Ti–Fe–Pd–X alloys. J Alloys Compd 404-406:675–678

    Article  CAS  Google Scholar 

  29. Zaluski L, Zaluska A, Tessier P, Strom-Olsen JO, Schulz R (1995) Catalytic effect of Pd on hydrogen absorption in mechanically alloyed Mg2Ni, LaNi5 and FeTi. J Alloys Compd 217:295–300

    Article  CAS  Google Scholar 

  30. Hou X, Hu R, Zhang T, Kou H, Li J (2013) Hydrogenation behavior of high-energy ball milled amorphous Mg2Ni catalyzed by multi-walled carbon nanotubes. Int J Hydrog Energy 38:16168–16176

    Article  CAS  Google Scholar 

  31. Yao X, Wu C, Du A, Zou J, Zhu Z, Wang P, Cheng H, Smith S, Lu G (2007) Metallic and carbon nanotube-catalyzed coupling of hydrogenation in magnesium. J Am Chem Soc 129:15650–15654

    Article  CAS  Google Scholar 

  32. Gattia DM, Gizer G, Montone A (2014) Effects of the compaction pressure and of the cycling process on kinetics and microstructure of compacted MgH2-based mixtures. Int J Hydrog Energy 39:9924–9930

    Article  Google Scholar 

  33. Jung CB, Lee KS (1997) Electrode characteristics of metal hydride electrodes prepared by mechanical alloying. J Alloys Compd 253-254:605–608

    Article  CAS  Google Scholar 

  34. Aoyagi H, Aoki K, Masumoto T (1995) Effect of ball milling on hydrogen absorption properties of FeTi, Mg2Ni and LaNi5. J Alloys Compd 231:804–809

    Article  CAS  Google Scholar 

  35. Hosni B, Khaldi C, Elkedim O, Fenineche N, Lamloumi J (2017) Electrochemical properties of Ti2Ni hydrogen storage alloy. Int J Hydrog Energy 42:1420–1428

    Article  CAS  Google Scholar 

  36. Khaldi C, Mathlouthi H, Lamloumi J, Percheron-Guégan A (2006) Electrochemical studies on the effect of cobalt substitution by iron in LaNi3.55Mn0.4Al0.3Co0.75 alloys. Phys Chem News 29:76–80

    CAS  Google Scholar 

  37. Kaabi A, Khaldi C, Lamloumi J (2016) Thermodynamic and kinetic parameters and high rate discharge-ability of the AB5-type metal hydride anode. Int J Hydrog Energy 41:9914–9923

    Article  CAS  Google Scholar 

  38. Huang LW, Elkedim O, Jarzebski M, Hamzaoui R, Jurczyk M (2010) Structural characterization and electrochemical hydrogen storage properties of Mg2Ni1−xMnx(x = 0, 0.125, 0.25, 0.375) alloys prepared by mechanical alloying. Int J Hydrog Energy 35:6794–6803

    Article  CAS  Google Scholar 

  39. Zadorozhnyy V, Klyamkin S, Zadorozhnyy M, Bermesheva O, Kaloshkin S (2012) Hydrogen storage nanocrystalline TiFe intermetallic compound: synthesis by mechanical alloying and compacting. Int J Hydrog Energy 37:17131–17136

    Article  CAS  Google Scholar 

  40. Abrashev B, Bliznakov S, Spassov T, Popov A (2007) Electrochemical hydriding of nanocrystalline TiFe alloys. J Appl Electrochem 37:871–875

    Article  CAS  Google Scholar 

  41. Hosni B, Li X, Khaldi C, Elkedim O, Lamloumi J (2014) Structure and electrochemical hydrogen storage properties of Ti2Ni alloy synthesized by ball milling. J Alloys Compd 615:119–125

    Article  CAS  Google Scholar 

  42. Li XD, Elkedim O, Nowak M, Jurczyk M, Chassagnon R (2013) Structural characterization and electrochemical hydrogen storage properties of Ti2-xZrxNi(x=0; 0.1; 0.2) alloys prepared by mechanical alloying. Int J Hydrog Energy 38:12126–12132

    Article  CAS  Google Scholar 

  43. Balcerzak M, Jakubowicz J, Kachlicki T, Jurczyk M (2015) Hydrogenation properties of nanostructured Ti2Ni-based alloys and nanocomposites. J Power Sources 280:435–445

    Article  CAS  Google Scholar 

  44. Nishina T, Ura H, Uchida I (1997) Determination of chemical diffusion coefficients in metal hydride particles with a microelectrode technique. J Electrochem Soc 144:1273–1277

    Article  CAS  Google Scholar 

  45. Zheng G, Popov BN, White RE (1995) Electrochemical determination of the diffusion coefficient of hydrogen through an LaNi4.25Al0.75 electrode in alkaline aqueous solution. J Electrochem Soc 142:2695–2698

    Article  CAS  Google Scholar 

  46. Kaabi A, Tliha M, Dhahri A, Khaldi C, Lamloumi J (2016) Study of electrochemical performances of perovskite-type oxide LaGaO3 for application as a novel anode material for Ni-MH secondary batteries. Ceram Int 42:11682–11686

    Article  CAS  Google Scholar 

  47. Ben Belgacem Y, Khaldi C, Lamloumi J (2016) The effect of the discharge rate on the electrochemical properties of AB3-type hydrogen storage alloy as anode in nickel–metal hydride batteries. Int J Hydrog Energy. doi:10.1016/j.ijhedrne.2016.12.143

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Conseil Regional de Franche-Comté.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Khaldi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosni, B., Fenineche, N., ElKedim, O. et al. Structural and electrochemical properties of TiFe alloys synthesized by ball milling for hydrogen storage. J Solid State Electrochem 22, 17–29 (2018). https://doi.org/10.1007/s10008-017-3718-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3718-9

Keywords

Navigation